The University of Texas
Graduate School of Biomedical Sciences
at Houston

General Information Section
2016 – 2018 Catalog

This catalog is a general information publication only. It is not intended to nor does it contain all regulations that relate to students. Applicants, students, and faculty are referred to the respective UTHealth School catalogs. The provisions of the General Information section or the School-specific information in each School catalog, student handbook or School policy or regulations do not constitute a contract, expressed or implied, between any applicant, student or faculty member and UTHealth or The University of Texas MD Anderson Cancer Center (MD Anderson) or The University of Texas System. UTHealth and MD Anderson reserve the right to withdraw courses at any time, to change fees or tuition, calendar, curriculum, degree requirements, graduation procedures, and any other requirement affecting students. Changes will become effective whenever the proper authorities so determine and will apply to both prospective students and those students already enrolled.

To the extent provided by applicable law, no person shall be excluded from participation in, denied the benefits of, or be subject to discrimination under any program or activity sponsored or conducted by UTHealth on the basis of race, color, national origin, religion, sex, sexual orientation, gender expression or gender identity, age, veteran status or disability.
General Information Section Table of Contents

5 Message from the UTHealth President
6 Message from the MD Anderson President
7 Welcome from the UTHealth Executive Vice President and Chief Academic Officer
8 Welcome from the MD Anderson Executive Vice President and Provost
9 Board of Regents
10 Administrative Officers
11 Mission Statement of The University of Texas Health Science Center at Houston
12 Mission Statement of The University of Texas MD Anderson Cancer Center

GENERAL INFORMATION
13 History of The University of Texas System
14 UTHealth Addresses
15 Institutional Governance
16 Councils and Standing Committees
16 Development Board

UTHEALTH CENTERS, PROGRAMS AND INSTITUTES
16 The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases
17 Center for Laboratory Animal Medicine & Care (CLAMC)
17 John P. McGovern, M.D., Center for Humanities and Ethics
18 Consortium on Aging
18 The University of Texas Harris County Psychiatric Center
19 The University of Texas MD Anderson Cancer Center
22 MD Anderson Addresses

MD ANDERSON CENTERS AND PROGRAMS
22 Center for Advanced Biomedical Imaging Research
23 Center for Biological Pathways
23 Center for Cancer Epigenetics
23 Center for Cancer Immunology Research
24 Center for Environmental and Molecular Carcinogenesis
24 Center for Genetics and Genomics
24 Center for Inflammation and Cancer
24 Center for RNA Interference and Non-Coding RNAs
25 Center for Stem Cell and Developmental Biology
25 Center for Targeted Therapy
25 Duncan Family Institute for Cancer Prevention and Risk Assessment
26 Institute for Applied Cancer Science
26 Institute for Basic Sciences
26 The Institute for Cancer Care Excellence
27 Institute for Personalized Cancer Therapy
27 The Red and Charline McCombs Institute
28 Metastasis Research Center
28 Proton Therapy Center
28 Robert J. Kleberg, Jr. & Helen C. Kleberg Center for Molecular Markers

MD ANDERSON SHARED RESOURCES
29 Cancer Center Support Grant Shared Resources
29 Bioinformatics
29 Biostatistics Resource Group
29 Characterized Cell Line Core Facility
29 Clinical & Translational Research Center
29 Clinical Trials Support Resource
30 e-Health Technology
30 Flow Cytometry and Cellular Imaging Core Facility
30 RPPA Core Facility - Functional Proteomics
31 Genetically Engineered Mouse Facility
31 High Resolution Electron Microscopy Facility
31 Monoclonal Antibody Core Facility
32 Mutant Mouse Pathology Service
33 Nuclear Magnetic Resonance Facility
32 Patient-Reported Outcomes, Survey and Population Research (PROSPR)
32 Research Animal Support Facility - Houston
32 Research Animal Support Facility - Smithville
33 Research Histopathology Facility
33 Sequencing and Microarray Facility (SMF)
33 shRNA and ORFeome Core
33 Small Animal Imaging Facility
34 Tissue Biospecimen & Pathology Resource

OTHER MD ANDERSON CORES
34 Biospecimen Extraction Facility
34 Bone Histomorphometry Core Laboratory
34 Cancer Genomics Core Laboratory
34 Keeling Center for Comparative Medicine and Research
35 Molecular Cytogenetics Facility
35 Multiphoton Microscopy Core
35 Sequencing and Non-Coding RNA Program
35 Proteomics Facility
36 Protocol Review and Monitoring
36 Science Park Shared Resources, Cores and Services
Welcome from the UT Health Science Center President

Welcome to UTHealth and to this pivotal next step in your academic career. You have chosen an educational institution that places its value in your success and your fulfillment; that invests in you as a person. These next years will be both challenging and enriching, and will prepare you to make significant contributions in your chosen professional field.

UTHealth is the most comprehensive academic health center in The University of Texas System and educates more than 5,000 health professionals every year. Our School of Dentistry is more than 100 years old and rich in tradition; our Graduate School of Biomedical Sciences offers an innovative curriculum of postgraduate training in partnership with The University of Texas MD Anderson Cancer Center; our McGovern Medical School is one of the largest in the nation and is home to Houston’s renowned faculty practice, UT Physicians; our School of Biomedical Informatics offers a first-of-its-kind curriculum critical to improving health delivery, quality and safety; our School of Public Health has a statewide presence with six campuses; and our School of Nursing is ranked among the top five percent in the nation.

Training at UTHealth will also provide you access to a broad patient population as well as opportunities to collaborate with students and faculty from all six of our schools, our affiliated partners and our neighboring institutions. Upon completion of your training, you will find that your classmates have become your lifelong friends and colleagues; your advisors and professors will have become your mentors.

As you join the UTHealth family, know that you have tremendous resources at your service. The faculty and staff are here to provide you with more than education – we are also here to support and guide you on your professional journey. In return, I ask that you give us your very best – for your benefit and for the benefit of your classmates. We need bright young minds like yours to provide innovative solutions to the most pressing health problems of our time. I know that you will make us proud.

Thanks to each of you for trusting us with your education and, again, welcome to UTHealth.

Sincerely,

Giuseppe N. Colasurdo, M.D.
President
The University of Texas Health Science Center at Houston
Welcome from the UT MD Anderson Cancer Center President

Welcome to The University of Texas MD Anderson Cancer Center (MD Anderson). We are proud to be partners with UTHealth to offer programs at The University of Texas Graduate School of Biomedical Sciences. Through this unique collaboration, opportunities abound for graduate students to explore fascinating areas of research, to learn from exceptional faculty members and to become strong contributors to ongoing — and future — biomedical science advances.

At MD Anderson, we are uniquely positioned to move science forward to improve the human condition, and we will need the best prepared and most dedicated people working together to achieve the great gains we expect. Because research is at the core of our institutional mission and the future of cancer science, developing the finest possible educational programs and recruiting top students — who are training to become the next generation of research scientists — are among my highest priorities as president. Our Graduate School of Biomedical Sciences is key to our success.

As a graduate student here, you can be an important part of our Making Cancer History® mission at a critical time, when the field of cancer medicine is changing rapidly. We are poised to make a decisive assault on this disease as there is a powerful confluence of knowledge, computational firepower and the ability to manipulate genes. We welcome your contribution in striving to achieve the ultimate goal of conquering cancer.

Offering doctoral and master’s degrees in diverse biomedical concentrations, the University of Texas Graduate School of Biomedical Sciences enables you to develop your course work, research, and training and to study with scientists in the field that best meets your interests and goals. MD Anderson faculty collaborate with colleagues from UTHealth across multidisciplinary programs, providing you with a great environment in which to learn as well as the resources and mentoring you will need to advance.

Please take advantage of all you have at your fingertips. We look forward to hearing about the discoveries you make as you progress toward your degree and the launch of an independent, impactful career.

Sincerely,

Ronald A. DePinho, M.D.
President
The University of Texas MD Anderson Cancer Center
Welcome from the UT Health Science Center Executive Vice President and Chief Academic Officer

Thank you for your interest in UTHealth. Whether you are a potential or existing student, faculty member, staff or community friend we invite you to learn more about our institution and why we pride ourselves in being Houston’s Health University. Our vision is “Excellence above all” in the quest to be a leader in the collaboration to treat, cure and prevent the most common diseases of our time through education, research and clinical practice.

The deans of our six schools have assembled dedicated teams of faculty and staff to provide the best education possible in medicine, nursing, dentistry, public health, biomedical informatics and the biomedical sciences. This is the most comprehensive collection of health education opportunities in Texas and we are proud that we are training tomorrow’s leaders in health care, research and education.

The research programs within the schools of UTHealth utilize state of the art technologies to create new knowledge through basic, translational and clinical research. These efforts are aided by our location in the Texas Medical Center where we engage in collaborative activities with major research institutions.

Moreover, we are committed to providing a diverse educational and work environment that is ethically-based and contributes to the needs of the community through quality health care delivery, public health expertise, outreach and service.

In closing, I invite you to explore UTHealth further and to take advantage of the opportunities our institution provides to help you make an impact on our society.

Sincerely,

Michael R. Blackburn, Ph.D.
Executive Vice President and Chief Academic Officer
The University of Texas Health Science Center at Houston
Welcome from the UT MD Anderson Cancer Center Provost and Executive Vice President

The University of Texas MD Anderson Cancer Center (MD Anderson) has enjoyed a long association in education and research with our sister institution in the Texas Medical Center, The University of Texas Health Science Center at Houston (UTHealth). We are particularly proud of our joint operation of The University of Texas Graduate School of Biomedical Sciences at Houston. MD Anderson’s entire basic science faculty and many of our clinical faculty teach, participate in committees and mentor students in the School. Education is one of MD Anderson’s main missions and our faculty, staff, and administration are committed to your career development and professional success.

MD Anderson is a leader among the nation’s comprehensive cancer centers. We excel in research as attested by our leading the nation in the number of individually awarded grants and total funding received from the National Cancer Institute. Our excellence in collaborative and multidisciplinary research is also shown by our receipt of more Specialized Programs of Research Excellence (SPORES) grants than any other institution. For graduate students, this translates into exciting opportunities to participate in and add to important and innovative biomedical research.

MD Anderson also has over 100 training grants and individually awarded fellowships for research training. These are awarded because other scientists and clinicians across the United States recognize the quality of the research training and education environment at MD Anderson.

We recognize that learning how to conduct innovative research is only one facet of a successful career. We have also created supportive professional development programs to aid in your academic progress. Each year, we provide more than 100 seminars, workshops and other programs designed to help you learn about manuscript and grant writing, presentation skills, laboratory and personnel management, organizational and time management skills, work and life balance, managing stress, conflict management, negotiation skills and much more. We are committed to providing the finest possible resources to ensure your success and we look forward to your time in our graduate school and at MD Anderson and UTHealth.

Sincerely,

Ethan Dmitrovsky, M.D.
Provost and Executive Vice President
The University of Texas MD Anderson Cancer Center
BOARD OF REGENTS

Officers

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paul L. Foster</td>
<td>Chairman</td>
</tr>
<tr>
<td>Jeffery D. Hildebrand</td>
<td>Vice Chairman</td>
</tr>
<tr>
<td>R. Steven “Steve” Hicks</td>
<td>Vice Chairman</td>
</tr>
<tr>
<td>Francie A. Frederick</td>
<td>General Counsel to the Board of Regents</td>
</tr>
</tbody>
</table>

Members

Terms Expire February 1, 2017

<table>
<thead>
<tr>
<th>Name</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alex M. Cranberg</td>
<td>Austin</td>
</tr>
<tr>
<td>Wallace L. Hall, Jr.</td>
<td>Dallas</td>
</tr>
<tr>
<td>Brenda Pejovich</td>
<td>Dallas</td>
</tr>
</tbody>
</table>

Term Expires May 31, 2017

<table>
<thead>
<tr>
<th>Name</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Varun Pokkamthanam Joseph</td>
<td>San Antonio</td>
</tr>
<tr>
<td>(Student Regent)</td>
<td></td>
</tr>
<tr>
<td>Student Regent serves a one-year term.</td>
<td></td>
</tr>
</tbody>
</table>

Terms expire February 1, 2019

<table>
<thead>
<tr>
<th>Name</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paul L. Foster</td>
<td>El Paso</td>
</tr>
<tr>
<td>Jeffery D. Hildebrand</td>
<td>Houston</td>
</tr>
<tr>
<td>Ernest Aliseda</td>
<td>McAllen</td>
</tr>
</tbody>
</table>

Terms expire February 1, 2021

<table>
<thead>
<tr>
<th>Name</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. Steven Hicks</td>
<td>Austin</td>
</tr>
<tr>
<td>David J. Beck</td>
<td>Houston</td>
</tr>
<tr>
<td>Sara Martinez Tucker</td>
<td>Dallas</td>
</tr>
</tbody>
</table>
ADMINISTRATIVE OFFICERS

The University of Texas System

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>William H. McRaven</td>
<td>Chancellor</td>
</tr>
<tr>
<td>Scott C. Kelley, Ed.D.</td>
<td>Executive Vice Chancellor for Business Affairs</td>
</tr>
<tr>
<td>Raymond S. Greenberg, M.D., Ph.D.</td>
<td>Executive Vice Chancellor for Health Affairs</td>
</tr>
<tr>
<td>Steven Leslie, Ph.D.</td>
<td>Executive Vice Chancellor for Academic Affairs</td>
</tr>
</tbody>
</table>

The University of Texas Health Science Center at Houston

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Giuseppe N. Colasurdo, M.D.</td>
<td>President</td>
</tr>
<tr>
<td>Michael R. Blackburn, Ph.D.</td>
<td>Executive Vice President and Chief Academic Officer</td>
</tr>
<tr>
<td>Kevin Dillon, M.B.A., C.P.A.</td>
<td>Senior Executive Vice President Chief Operating and Financial Officer</td>
</tr>
<tr>
<td>John A. Valenza, D.D.S.</td>
<td>Dean</td>
</tr>
<tr>
<td>Eric Boerwinkle, Ph.D.</td>
<td>Dean</td>
</tr>
<tr>
<td>Barbara J. Stoll, M.D.</td>
<td>Dean</td>
</tr>
<tr>
<td>Jiajie Zhang, Ph.D.</td>
<td>Dean</td>
</tr>
<tr>
<td>Michelle C. Barton, Ph.D.</td>
<td>Dean</td>
</tr>
<tr>
<td>Michael R. Blackburn, Ph.D.</td>
<td>Dean</td>
</tr>
<tr>
<td>Lorraine Frazier, Ph.D., RN, FAAN, FAHA</td>
<td>Dean</td>
</tr>
</tbody>
</table>

The University of Texas MD Anderson Cancer Center

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ronald A. DePinho, M.D.</td>
<td>President</td>
</tr>
<tr>
<td>Ethan Dmitrovsky, M.D.</td>
<td>Provost and Executive Vice President</td>
</tr>
<tr>
<td>Helen Piwnica-Worms, Ph.D.</td>
<td>Vice Provost for Science</td>
</tr>
<tr>
<td>Oliver Bögler, Ph.D.</td>
<td>Senior Vice President, Academic Affairs</td>
</tr>
<tr>
<td>Michelle C. Barton, Ph.D.</td>
<td>Deans, Graduate School of Biomedical Sciences</td>
</tr>
<tr>
<td>Shirley Richmond, Ed.D.</td>
<td>Dean, School of Health Professions</td>
</tr>
</tbody>
</table>
MISSION AND VISION STATEMENTS

Teaching, Searching, Serving

Mission Statement
As a comprehensive health science university, the mission of The University of Texas Health Science Center at Houston (UTHealth) is to educate health science professionals, discover and translate advances in the biomedical and social sciences, and model the best practices in clinical care and public health.

We pursue this mission in order to advance the quality of human life by enhancing the diagnosis, treatment, and prevention of disease and injury, as well as promoting individual health and community well-being.

To fulfill our mission, UTHealth:
1. Educates health professionals and scientists in a diverse interdisciplinary academic community.
2. Creates and evaluates new knowledge – through basic science and applied research – as it relates to disease prevention, treatment and cure.
3. Provides leadership and advances scholarship in biomedical sciences, health professions, health promotion, public health policy and health care delivery.
4. Models appropriate and compassionate clinical care.
5. Addresses the health needs of the community at large through public health expertise, information, outreach and service.
6. Develops the expanding field of health information science.

Vision Statement
“Excellence above all” in the quest to be an acknowledged leader in the collaboration to treat, cure, and prevent the most common diseases of our time through education, research, and clinical practice.

The University of Texas Health Science Center at Houston aspires to be a leader in the collaboration to treat, prevent, and cure the most common diseases of our time by:
1. Utilizing the distinctive capabilities of its schools, clinics, institutes and centers;
2. Collaborating with colleagues in The University of Texas System, the Texas Medical Center and throughout the world;
3. Being an academic health science center that is nationally and internationally recognized in teaching, research and service;
4. Serving as a home for the visionaries and scholars who will lead the way in defining and creating the future of the health sciences; and

5. Providing a diverse work environment that is ethically-based, service-oriented and community-sensitive.

MISSION, VISION & CORE VALUES OF MD ANDERSON

Eliminating Cancer in Texas, The Nation and The World

Mission

The mission of The University of Texas MD Anderson Cancer Center (MD Anderson) is to eliminate cancer in Texas, the nation and the world through outstanding programs that integrate patient care, research and prevention, and through education for our undergraduate and graduate students, trainees, professionals, employees and the public.

Visions

We shall be the premier cancer center in the world, based on the excellence of our people, our research-driven patient care and our science. We are Making Cancer History™.

CORE VALUES

Caring

By our words and actions we create a caring environment for everyone.

- We are sensitive to the concerns of our patients and our co-worker
- We are respectful and courteous to each other at all times.
- We promote and reward teamwork and inclusiveness.

Integrity

We work together to merit the trust of our colleagues and those we serve.

- We hold ourselves, and each other, accountable for practicing our values.
- We communicate frequently, honestly and openly.
- By our actions, we create an environment of trust.

Discovery

We embrace creativity and seek new knowledge.

- We help each other to identify and solve problems.
- We seek personal growth and enable others to do so.
- We encourage learning, creativity and new ideas.
GENERAL INFORMATION

History of The University of Texas System

The idea of a University of Texas is as old as the State. The Texas Declaration of Independence lists as one of its main indictments against the government of Mexico the fact that “it has failed to establish any public system of education...” Several early attempts were made to establish a state university, but they were not successful because of the Civil War and subsequent Era of Reconstruction. Establishment of a state university for Texas was provided first by act of the State Legislature in 1881. It provided for the location of the institution by popular vote and for appointment of a Board of Regents to be entrusted with its organization and governance. By results of an election in September 1881, the site of the main university was designated as Austin and Galveston was chosen as the location for the Medical Branch. An undergraduate college and law school was established and The University of Texas formally opened on September 15, 1883.

Educating students, providing care for patients, conducting groundbreaking basic, applied and clinical research, and serving the needs of Texans and the nation for more than 130 years, UT System is one of the largest public university systems in the United States. Numerous campuses, schools, colleges, divisions and branches have been added to The University of Texas System at several locations throughout the state. The System now includes academic campuses in Arlington, Austin, Dallas, El Paso, Midland/Odessa (UT Permian Basin), San Antonio, Rio Grande Valley, and Tyler. The health science centers are located at Dallas, Galveston, Houston, San Antonio and Tyler. The University of Texas MD Anderson Cancer Center is located in Houston.

Other components of the System include the Institute of Texas Cultures (UT San Antonio), the Institute of Humanities in Medicine (UT Medical Branch, Galveston), the Environmental Science Park near Smithville (UT MD Anderson Cancer Center), the Marine Science Institute in Port Aransas (UT Austin), the McDonald Observatory at Fort Davis (UT Austin), and the Shriners Burn Institute (in conjunction with UT Medical Branch, Galveston).

The University of Texas Health Science Center at Houston

The University of Texas Health Science Center at Houston (UTHealth) was established in late 1972 to administer and provide for the operation of the several biomedical and health-related units located in the city through the integration and coordination of functions and activities. The Health Science Center presently includes, in order of establishment:

- 1905 School of Dentistry (originally as the Texas Dental College)
- 1963 Graduate School of Biomedical Sciences
- 1967 School of Public Health
- 1970 McGovern Medical School (2016 name change to John P. and Kathrine G. McGovern Medical School)
- 1972 School of Nursing
- 1973 School of Biomedical Informatics (originally as the School of Allied Health Sciences)
- 1990 Harris County Psychiatric Center
- 1995 Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases

As a component of The University of Texas System, UTHealth is subject to The University of Texas System Board of Regents – Rules and Regulations for the governance of The University of Texas System.
The official name of the institution is The University of Texas Health Science Center at Houston. It is informally termed UTHealth or the Health Science Center.

Today, UTHealth employs approximately 2,000 faculty, 5,400 staff and has more than 5,000 students enrolled in various health and biomedical disciplines at its component schools in Houston and at campuses located in Austin, Brownsville, Dallas, El Paso, and San Antonio.

UTHealth Addresses

<table>
<thead>
<tr>
<th>School of Dentistry</th>
<th>TMC Library</th>
</tr>
</thead>
<tbody>
<tr>
<td>7500 Cambridge St.</td>
<td>1133 John Freeman Blvd.</td>
</tr>
<tr>
<td>Houston, TX 77054</td>
<td>Houston, TX 77030</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>McGovern Medical School</th>
<th>Harris County Psychiatric Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medical School Building</td>
<td>2800 S. MacGregor Way</td>
</tr>
<tr>
<td>6431 Fannin</td>
<td>Houston, TX 77021</td>
</tr>
<tr>
<td>Houston, TX 77030-1503</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Graduate School of Biomedical Sciences</th>
<th>Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases</th>
</tr>
</thead>
<tbody>
<tr>
<td>6767 Bertner Ave., Rm 3.8344</td>
<td>1825 Hermann Pressler St.</td>
</tr>
<tr>
<td>Houston, TX 77030</td>
<td>Houston, TX 77030</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>School of Biomedical Informatics</th>
<th>Recreation Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>(University Center Tower)</td>
<td>7779 Knight Road</td>
</tr>
<tr>
<td>7000 Fannin, Suite 600</td>
<td>Houston, TX 77030</td>
</tr>
<tr>
<td>Houston, TX 77030</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>School of Nursing</th>
<th>Registrar Office</th>
</tr>
</thead>
<tbody>
<tr>
<td>6901 Bertner</td>
<td>(University Center Tower)</td>
</tr>
<tr>
<td>Houston, TX 77030</td>
<td>7000 Fannin, Suite 2250</td>
</tr>
<tr>
<td></td>
<td>Houston, TX 77030</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>School of Public Health</th>
<th>Student Financial Services</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Reuel A. Stallones Building)</td>
<td>(University Center Tower)</td>
</tr>
<tr>
<td>1200 Herman Pressler</td>
<td>7000 Fannin, Suite 2220</td>
</tr>
<tr>
<td>Houston, TX 77030-3900</td>
<td>Houston, TX 77030</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Child Development Center</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7900 Cambridge</td>
<td></td>
</tr>
<tr>
<td>Houston, TX 77054-5500</td>
<td></td>
</tr>
</tbody>
</table>
Institutional Governance

Institutional governance at The University of Texas Health Science Center at Houston is supported by a system of councils and standing committees. As a whole, these councils enhance communication both vertically and horizontally within the university; enable leaders and constituent representatives from each of the major mission areas to participate in exchange of information and decision making; and incorporate ideas and points of view from a variety of students, faculty and staff in the decision-making process. Deliberations and recommendations from councils provide assistance to executive leadership of the university as they make decisions about the university’s future and well-being. The University Executive Council is responsible for advising the President on key issues related to institutional governance and operations.
Councils and Standing Committees

Academic Council
Animal Welfare Committee
Audit Committee
Biological Safety Committee
Chemical Safety Committee
Committee for the Protection of Human Subjects
Committee on the Status of Women
Institutional Biosafety Committee
Intellectual Property Committee
Interfaculty Council
Radiation Safety Committee
Research Conflicts of Interest Committee
Research Council
Student InterCouncil
Student Services Council
University Appointment, Promotion and Tenure Committee
University Classified Staff Council
University Leadership Council
University Safety Council

Development Board

The University of Texas Health Science Center at Houston Development Board consists of approximately 180 community leaders who have committed to advance the mission and vision of the health science center by increasing public awareness and philanthropic support through advocacy, service and investment.

UTHEALTH CENTERS, PROGRAMS AND INSTITUTES

A variety of interdisciplinary centers, institutes and programs have been created to enrich the primary programs of the schools of UTHHealth. In general, they focus on specific service and research efforts while the institutes provide opportunities for special multidisciplinary educational projects. These efforts reinforce UTHHealth’s commitment to providing a means through which the health professions may join with each other and with society to consider health-related issues.

Listed below are a few of UTHHealth’s centers. A more comprehensive listing can be found at https://www.uth.edu/index/institutes-centers.htm. Inquiries for more detailed information should be directed to the appropriate school.

The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases

Advances in molecular and cell biology have enormous potential for innovative medical research and the future practice of medicine with more novel therapies. These approaches have been most successfully used to determine the causes of infectious disorders and genetic diseases. However, it is clear that molecular and cell biology will play a major role in clarifying the causes of many unsolved problems of modern medicine: heart disease, hypertension, vascular disorders, major mental illnesses, and inflammatory and immunologic diseases. The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM) houses nine research centers and several support laboratories, each exploring the genetic and molecular aspects of biological processes significant to explain the basis of human diseases.

The long-term goals of the IMM are to set the example for research excellence and collaborations locally, nationally, and internationally. Scientifically, the IMM is on the verge of a new frontier of expansion and collaborations. The IMM has two major objectives: discovery through medical
advancements driven by breakthrough discoveries which give new insight into disease that lead to new solutions; and patient benefit from such solutions. New diagnostics and therapies are a derivative of discovery. The IMM focuses on these medical solutions. The IMM has organized Texas talent in the Texas Therapeutics Institute to achieve this goal of patient benefit from discovery.

Website http://www.uthouston.edu/imm

Center for Laboratory Animal Medicine & Care (CLAMC)

The Center for Laboratory Animal Medicine and Care (CLAMC) is fully accredited by the Association for Assessment and Accreditation of Laboratory Animal Care International (AAALAC-International), and meets all standards mandated by the Animal Welfare Act, Centers for Disease Control, National Research Council Guide for the Care and Use of Laboratory Animals and the Public Health Service Policy on Humane Care and Use of Laboratory Animals. CLAMC is responsible for the management and operation of campus animal care and use programs for UTHealth. CLAMC maintains five physically separate animal facilities and several satellites on the Texas Medical Center campus. The program provides professional veterinary, surgical, and animal care services in support of principal investigators’ animal use studies. The CLAMC is an integral part of UTHealth’s research and teaching mission and provides the highest standards possible for ensuring the health and well-being of laboratory animals used in biomedical research. CLAMC staff includes five veterinarians, nine veterinary technologists, and approximately 30 animal care and support personnel.

Website: https://www.uth.edu/animal-research/

John P. McGovern, M.D., Center for Humanities and Ethics

Established in 2004, The John P. McGovern, M.D. Center for Humanities and Ethics promotes excellence in scholarship and teaching in the medical humanities and ethics. It provides an interdisciplinary forum where scholars, students, physicians, and other health care professionals examine questions of value and meaning in search of ethically sound and spiritually informed patient care. Appropriately, the Center bears the name of John P. McGovern, M.D. (1921-2007), who founded the American Osler Society and throughout his lifetime championed the importance of the compassionate art of medicine.

The McGovern Center is housed in McGovern Medical School but serves all six UTHealth schools. Drawing from bioethics, history, health law, spirituality, literature and the arts, the Center directs several required courses across the campus. It also organizes numerous elective courses, lectures, research seminars, and faculty workshops and provides consultation services. It provides opportunities for collaborative research and professional development for students, residents and faculty. The Center collaborates with other academic institutions in Houston, including Rice University, UT MD Anderson Cancer Center and the University of Houston, as well as the Museum of Fine Arts and the Jung Center.

In 2005 the Center created the Sacred Vocation Program (SVP) for the healthcare industry. This experiential program includes both personal and workplace transformational workshops with the goal of reconnecting healthcare professionals to the vocation and enabling workplaces to nurture their employees. To date the SVP has been implemented in health care systems and social service agencies throughout the United States. It has also become a required element in several McGovern Medical School residency programs.
The Center established a Medical Humanities Certificate Program in 2006. This four-year program enriches medical students’ education through additional study and involvement in the humanities, including participation in elective courses, seminars and ethics grand rounds, community outreach opportunities, writing workshops and directed research, leading to a Certificate in the Medical Humanities.

In 2009, the Center launched a Campus-Wide Ethics Program to enhance the ethics and professionalism curricula at each of the six UTHealth schools. Effective in 2011, all UTHealth students are required to take an introductory ethics and professionalism curriculum called, “The Brewsters.” The Brewsters, available on-line, is a choose your own adventure, three-act experience where students immerse themselves as fictional characters caught up in ethical dilemmas.

The Center also sponsors a Postdoctoral Program that draws from a national pool of applicants. It welcomes two Postdoctoral Fellows for two years at a time. The Fellows spend their time teaching and working in Center programs and pursuing their own research and scholarship. As of 2016, all former Postdoctoral Fellows had moved on to academic jobs in health science centers or undergraduate liberal arts colleges or universities.

Website: http://www.uth.tmc.edu/hhhs/

Consortium on Aging

The Consortium on Aging was established to lead UTHealth in meeting the challenge of providing quality health care for the growing elderly population in Houston. The consortium is a university-wide collaborative effort that leverages the existing strengths and expertise of all the UTHealth schools and centers to focus on aging-related interdisciplinary care, education, research, and community outreach. The Consortium’s mission includes comprehensive care for older adults and their caregivers; education of future health care providers, the current workforce and the community at large; and, research to expand our understanding of aging.

Website: https://www.uth.edu/aging/index.htm

The University of Texas Harris County Psychiatric Center

The University of Texas Harris County Psychiatric Center (HCPC) opened in 1986 and is the only acute care, public psychiatric facility in Harris County serving persons with debilitating chronic mental illness. It is fully accredited by The Joint Commission, which recognized HCPC as a Top Performer in Key Quality Measures for 2015.

HCPC is dedicated to excellence and leadership in the treatment of persons with mental illness. It shares UTHealth’s additional missions of conducting research into the causes and cures of mental illness, providing education of professionals in the care of mental illness and acting as a community resource providing outreach to the community.

HCPC and the McGovern Medical School Department of Psychiatry offers a comprehensive program of in-patient (HCPC) and outpatient (Department of Psychiatry) diagnostic and treatment services for:

- Adults 18 and up with bipolar disorder, depression, schizophrenia, dementia, psychosocial or personality disorders; and,
The University of Texas Graduate School of Biomedical Sciences at Houston

- Children and adolescents, ages 3 through 17, with depression, bipolar disorder, schizophrenia, personality disorders, attention deficit disorders and hyperactivity disorders.

HCPC’s treatment programs offer individualized treatment plans; individual and group counseling and therapy; family participation; discharge planning and community follow-up referrals. In 2015, HCPC established geriatric psychiatry and ECT services (including outpatient treatment). HCPC utilizes a multidisciplinary team approach, including, as needed, psychiatrists, nurses, residents, psychologists, social workers, clinical programming therapists, dietitians and clergy.

HCPC serves more than 9,000 patients annually. Additionally, approximately 2,000 students receive practical experience in the fields of medicine, psychiatry, psychology, nursing, social work, pharmacy, and recreational therapy.

HCPC, in cooperation with the Mental Health and Mental Retardation Authority of Harris County, also operates an active forensic competency restoration unit, providing care for those incarcerated by the Harris County Sheriff’s Office in the Harris County Jail as well as other jail facilities throughout the area.

Website: http://hcpc.uth.tmc.edu/

The University of Texas MD Anderson Cancer Center

Celebrating more than seven decades of Making Cancer History®, The University of Texas MD Anderson Cancer Center (MD Anderson) is located in Houston on the sprawling complex of the Texas Medical Center. It is one of the world’s most respected centers devoted exclusively to cancer patient care, research, education and prevention.

MD Anderson was created by the Texas Legislature in 1941 as a component of The University of Texas System, and has over 1,900 faculty (M.D. and Ph.D.). MD Anderson is one of the nation’s original three Comprehensive Cancer Centers designated by the National Cancer Act of 1971 and, today is one of 41 Comprehensive Cancer Centers.

For 11 of the past 14 years, including 2015, MD Anderson has ranked No. 1 in cancer care in the “best hospitals” survey published by U.S. News & World Report.

Patient Care

Since 1944, more than 1 million patients have turned to MD Anderson for cancer care in the form of targeted therapies, surgery, chemotherapy, radiation and proton therapy, immunotherapy or combinations of these and other treatments. The multidisciplinary approach to treating cancer was pioneered at MD Anderson. This brings together teams of experts across disciplines to collaborate on the best treatment plan for patients. And because MD Anderson’s experts focus solely on cancer, they’re renowned for treating all types of cancer, including rare and uncommon diseases.

In Fiscal Year 2014, MD Anderson provided cancer care for about 127,000 patients. Of those, more than 37,500 were new patients. About one-third of patients come to Houston from outside Texas, seeking the knowledge-based care that has made MD Anderson so widely respected. The institution’s clinical trial program is the largest in the nation, with more than 8,000 registrants on clinical trials in FY14.

MD Anderson holds accreditation from the Joint Commission on Accreditation of Healthcare
Organizations (JCAHO) and has Magnet Nursing Services Recognition from the American Nurses Credentialing Center, the highest international award for nursing excellence.

Research

At MD Anderson, important scientific knowledge gained in the laboratory is rapidly translated into clinical care. Overall, MD Anderson’s research program is considered one of the most productive efforts in the world aimed solely at cancer.

In FY14, MD Anderson invested more than $736 million in research, an increase of 35% in the past five years. The institution ranks first in the number of research grants awarded and total amount of grants given by the National Cancer Institute and holds 10 NCI Specialized Programs of Research Excellence (SPORE) grants in the following cancers: bladder, brain, leukemia, lung, melanoma, multiple myeloma, ovarian, prostate, thyroid and uterine.

Our Moon Shots Program was launched in 2012 to dramatically accelerate the pace of converting scientific discoveries into clinical advances that reduce cancer deaths. The program brings together multidisciplinary groups of researchers and clinicians to mount comprehensive attacks on cancers. They’ll work as part of 12 moon shot teams: acute myeloid leukemia and myelodysplastic syndrome, B-cell lymphomas, chronic lymphocytic leukemia, colorectal cancer, glioblastoma, human papilloma virus-related cancers, lung cancer, melanoma, multiple melanoma, pancreatic cancer, prostate cancer, and triple-negative breast and high-grade serous ovarian cancers, which are linked at the molecular level.

Ten moon shots platforms provide infrastructure, technology and expertise for the Moon Shots Program: Adaptive patient-oriented longitudinal learning and optimization (APOLLO), big data, cancer prevention and control, cancer genomics laboratory, center for co-clinical trials, immunotherapy, proteomics, Institute for Applied Cancer therapy, adoptive cell therapy, and Oncology research for biologics and immunotherapy translation (ORBIT).

Creation of the Institute for Applied Cancer Science has expanded MD Anderson’s research endeavors. The institute’s goal is to identify and validate new cancer targets, convert the scientific knowledge into new cancer drugs, and advance the novel agents into innovative clinical trials through a streamlined collaboration between academic medicine and the biotechnology industry.

The new Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy is an international center of clinical excellence focusing on using the latest advances in genetic information to develop safer, more effective treatments for patients on a case-by-case basis.

The McCombs Institute for the Early Detection and Treatment of Cancer comprises seven translational research centers focused on genomics, proteomics, screening, diagnostic imaging and drug development. They include the Cancer Metastasis Research Center, Center for Cancer Immunology Research, Robert J. Kleberg Jr. and Helen C. Kleberg Center for Molecular Markers, Proton Therapy Center, Center for Advanced Biomedical Imaging Research, Center for Targeted Therapy and Center for RNA Interference and Non-Coding RNAs.

In the Institute for Basic Science, researchers are working to better understand the makeup of healthy human cells, how they function under normal conditions and what happens when cancer develops. This knowledge will feed directly into clinical research, prevention, diagnosis and treatment.
Education

In FY14, 6,300 trainees, including physicians, scientists, nurses, and allied health professionals took part in MD Anderson educational programs. More than 300 students attended the institution’s School of Health Professions, which offers bachelor’s degrees in eight health disciplines, and a master of science in diagnostic genetics.

Nearly 1,300 clinical residents and fellows come to MD Anderson each year to receive specialized training in the investigation and treatment of cancer. More than 550 graduate students are working on advanced degrees at the Graduate School of Biomedical Sciences, which MD Anderson operates with The University of Texas Health Science Center at Houston. The institution’s laboratories provide training for 1,800-plus research fellows.

Thousands more participate in continuing education and distance learning opportunities sponsored by MD Anderson, sharing knowledge around the globe. The institution also provides public education programs to teach healthy people and at-risk populations about cancer symptoms and risk factors.

Prevention

MD Anderson continues to set the standard in cancer prevention research and the translation of new knowledge into innovative, multidisciplinary care.

The institution’s Cancer Prevention and Population Sciences division is dedicated to:

- Ending cancer through pioneering research into the roles that biologic, genetic, environmental, economic, behavioral and social factors play in cancer development.
- Investigating various types of interventions to prevent or reduce cancer risk.
- Improving cancer care delivery, safety, availability and affordability.

Through the Duncan Family Institute for Cancer Prevention and Risk Assessment, the division invests in promising new research directions and integrating basic research and clinical studies to accelerate their translation from the clinic to the community.

The Department of Health Services Research focuses on studying health care costs, quality and access, and seeking ways to improve health care delivery, safety, availability and affordability.

The Lyda Hill Cancer Prevention Center provides cancer risk assessments, screening exams based on genetics, age and gender, and personalized risk-reduction strategies, including chemoprevention.

Human Resources

MD Anderson employs more than 20,000 people, including more than 1,700 faculty. A volunteer corps of about 1,080 contributed 164,970 hours of service in FY14. All are dedicated to MD Anderson’s core values of caring, integrity and discovery. Together, they work toward fulfilling the MD Anderson mission of eliminating cancer as a major health threat.

The institution’s faculty members are among the most esteemed in the nation, including nine Institute of Medicine members, three National Academy of Sciences members, four Academy of Arts and Sciences fellows and 32 American Association for the Advancement of Sciences fellows.
Facilities

With employees working in more than 50 buildings in the greater Houston area and in central Texas, MD Anderson is the largest freestanding cancer center in the world. Its facilities in the Texas Medical Center cover more than 15 million square feet and feature the latest equipment and facilities to support growing needs in outpatient and inpatient care, research, prevention and education.

MD Anderson leadership is committed to facilitating the application of laboratory findings to the areas of prevention, diagnosis, and treatment of cancer. Exchanges between basic scientists and clinical investigators are facilitated so the discoveries of the former may be applied to the observations of the latter. In planning facilities, MD Anderson has placed clinical and basic science investigators in close proximity. This approach further augments and fosters interdisciplinary collaborations.

MD Anderson Addresses

The University of Texas MD Anderson Cancer Center (Street Address)
1515 Holcombe Blvd.
Houston, Texas 77030

The University of Texas MD Anderson Cancer Center (Mailing Address)
P.O. Box 20334
Houston, Texas 77225-0334

The University of Texas Graduate School of Biomedical Sciences at Houston
Office of the Dean
6767 Bertner Ave.,
Rm 3.8344
Houston, Texas 77030

MD ANDERSON CENTERS AND PROGRAMS

Center for Advanced Biomedical Imaging Research

Current imaging processes can identify diseased organs, but often not until the disease is advanced and harder to treat. Likewise, because small changes that reflect early response to therapy cannot be easily distinguished, it can be difficult to determine whether a treatment is effective early on.

The center’s researchers and physicians will overcome these problems by developing and applying new, more sensitive molecular imaging agents for positron-emission tomography (PET), contrast computed tomography (CT), and magnetic resonance imaging (MRI) techniques. Advances in imaging allow physicians to select appropriate treatments and determine within hours or days (instead of many months) the effectiveness of cancer therapy.

Website: https://www.mdanderson.org/research/departments-labs-institutes/programs-centers/center-for-advanced-biomedical-imaging-research.html
Center for Biological Pathways

The Center for Biological Pathways at MD Anderson focuses on laboratory research to understand how molecular pathways function and how their dysregulation causes cancer, and makes cancer cells spread.

Cancer is caused by the abnormal functioning of critical genes. The tools and methods of basic science research are key to discovering and understanding how the fundamental processes that go wrong in cancer work. MD Anderson is well positioned to not only bring the key questions from the clinic to basic cancer research, but also to translate laboratory discoveries back into clinical trials. New information from basic science—such as studies of the underlying cellular and molecular structures and processes of life, DNA, genes and alterations, stem cells, cell metabolism and signaling pathways—bring together the pieces of the cancer puzzle when combined with clinical insights.

The Center for Biological Pathways coordinates the interaction of Center members, all of whom work to unravel novel molecular and cellular pathways within their oncologic specialty. This coordination expedites the translation of laboratory discoveries into clinical research. The Center provides state-of-the-art shared resources and an intellectual environment to facilitate interactions, stimulate genius, and expedite research outcomes.

Website: http://www.mdanderson.org/cbp

Center for Cancer Epigenetics

The Center for Cancer Epigenetics (CCE) brings together faculty members focused on epigenetics, the study of heritable and acquired changes that affect gene expression and cellular differentiation without DNA sequence alteration. Epigenetic changes are now thought to be just as important as gene mutations in cancer development. The ultimate goal of the center is to define the full spectrum of epigenetic changes that occur in cancers, to discover the molecular causes of these changes, and to translate that newly gained knowledge into the clinic in the form of novel, epigenetic based therapies. Members of the center include faculty from several basic research and clinical departments at MD Anderson, including our Smithville campus, as well as Baylor College of Medicine.

Website: http://www.mdanderson.org/cancer-epigenetics

Center for Cancer Immunology Research

The Center for Cancer Immunology Research (CCIR) is a one of a kind research program where laboratory and clinical immunologists work side by side to translate groundbreaking discoveries in basic immunology into the development of innovative immunotherapies that employ our immune system to eliminate cancer and prevent its recurrence.

CCIR investigators have made remarkable progress in the number of high-quality publications, level of research support, and number of investigator-initiated pre-clinical studies/clinical trials.

Website: http://www.mdanderson.org/ccir
Center for Environmental and Molecular Carcinogenesis

The Center for Environmental and Molecular Carcinogenesis (CEMC) provides state-of-the-art technologies and an intellectual framework to foster multidisciplinary research into the environmental, genetic and epigenetic factors that influence the initiation and progression of cancer. Environmental factors, which include diet and other lifestyle factors, are known to be involved in the etiology of most cancers. Aims are to define the step-wise molecular and cellular alterations that occur during the process of carcinogenesis; determine how environmental exposures cause key genetic mutations and epigenetic changes that underlie carcinogenesis, and discover the impact of environmental factors on the generation and maintenance of cancer stem cells. The overall goal of this research is to identify new targets and strategies for cancer prevention and treatment. This center fosters collaborations among researchers at the MD Anderson Smithville, Texas, and Houston campuses.

Website: http://www.mdanderson.org/cemc

Center for Genetics and Genomics

The Center for Genetics and Genomics focuses on establishing synergy in genetics and genomics research at MD Anderson.

One of the mechanisms to accomplish this is to bring together researchers to present and discuss current research, exchange ideas for future funding and goals and to disseminate pertinent data and genetic models that emphasize MD Anderson’s unique research environment.

The Center for Genetics and Genomics is one of seven centers within the Institute for Basic Science at MD Anderson. Each center works on a research theme that encourages participation and interaction among basic, translational and clinical faculty members.

Website: http://www.mdanderson.org/cgg

Center for Inflammation and Cancer

The Center for Inflammation and Cancer (CIC) was established in late 2008 and is one of several interdisciplinary research centers in the MD Anderson Institute for Basic Science. Inflammation has been closely linked with various cancers. The goal of the CIC is to provide an interactive platform across MD Anderson and the Texas Medical Center to study cross-regulation of inflammatory cell types and tumor microenvironments and the underlying molecular mechanisms using both animal models and patient samples.

Website: http://www.mdanderson.org/cic

Center for RNA Interference and Non-Coding RNAs

The Center for RNA Interference and Non-Coding RNAs (RNA Center), established under the Red and Charline McCombs Institute for the Early Detection and Treatment of Cancer, is a unique collaborative initiative among MD Anderson Cancer Center, Baylor College of Medicine, the University of Texas Health Science Center at Houston, Rice University and the University of Houston that will focus on gaining insights into the roles of newly discovered RNAs in cancer initiation, progression and dissemination. The Center drives discovery of molecular markers of cancer by evaluating, co-developing facilitating and disseminating novel ncRNA technology.
Center for Stem Cell and Developmental Biology

The Center for Stem Cell and Developmental Biology (CSCDB) provides a platform for interactions between researchers interested in the biology of normal and aberrant (cancer) stem cells, regeneration and differentiation. The members of the center take diverse approaches toward a thorough understanding of stem cells, with an ultimate goal of therapeutic attack on cancers. These efforts are not limited to the 40-plus laboratories across 15 different departments of the UT MD Anderson Cancer Center, but are being coordinated across the Texas Medical Center to include researchers at Baylor College of Medicine and the Institute for Molecular Medicine.

The Center for Stem Cell and Developmental Biology has three major goals: to understand how tumor-derived stem cells become aggressive cancers, to develop stem cells for use in regenerative therapies, and to determine basic mechanisms of differentiation and development.

Website: http://www.mdanderson.org/scdb

Center for Targeted Therapy

The center’s goal is to produce or identify drugs that treat the carcinogenic, genetic and molecular changes that lead to cancer. Designer drugs are developed to attack defects in cancerous and pre-cancerous cells. Molecular and genetic defects in cancer cells can reveal targets specific to each patient, which will be the object of drugs designed to destroy the malignant cells. These targets will also be the next frontier in cancer prevention, allowing physicians to correct or destroy cells with defects before they become a health threat.

Progress in technologies such as genomics and proteomics and sophisticated bioinformatics analyses has provided the tools and knowledge needed to enhance the design and application of novel cancer therapeutics.

Some of the genetic “abnormalities” found in individual tumors and blood can serve as “cancer markers” that will help researchers identify the genetic profile of each patient’s cancer and develop an individualized approach that will be both more effective and less toxic.

Website: http://www.mdanderson.org/ctt

Duncan Family Institute for Cancer Prevention and Risk Assessment

The Duncan Family Institute for Cancer Prevention and Risk Assessment, formed in 2008 through a generous gift from the Duncan Family, is advancing the science and practice of cancer prevention by accelerating the discovery and translation of new knowledge about cancer risk factors and developing innovative ways to reduce risk and prevent cancer while expanding our studies to attack multiple risk factors using complementary strategies. The Duncan Family Institute serves to foster collaboration aimed at breaking new ground in cancer prevention. Scientists affiliated with the Institute are discovering the roles and effects of the interaction of biologic, genetic, environmental, behavioral and social factors in cancer development, investigating new medical and lifestyle interventions and the effect of the combination of these on reducing cancer risk, and increasing the pace of translation of discovery to the clinic and the community so that, ultimately, the benefits of our discoveries help reduce the overall burden of cancer.
Institute for Applied Cancer Science

MD Anderson is known for providing cancer patients with exceptional care, which includes early access to innovative new treatments through clinical trials. The Institute for Applied Cancer Science (IACS) is a new hybrid model that uniquely combines the drug discovery capabilities of the biopharmaceutical industry and the extensive knowledge of biology found in academia with the expertise of MD Anderson’s top clinicians to develop new therapeutic options.

IACS executes programs with the highest probability of clinical success in a rigorous, goal-oriented, data-driven manner. Employing the Bench at the Bedside approach IACS uniquely integrates three key components:

- Access to insights gained from the largest set of cancer patients and some of the best physician scientists in the nation
- Highly experienced team of drug discovery and development scientists
- Clinically informed, patient-oriented research focused on the endpoint of delivering impactful clinical responses

Website: http://www.mdanderson.org/applied-cancer-science

Institute for Basic Sciences

The Institute for Basic Sciences’ goal is to accelerate scientific discoveries by recruiting outstanding laboratory scientists and creating a collaborative environment in which our faculty have access to state-of-the-art core facilities and participate in theme- and/or disease-oriented symposia and retreats. The Institute serves as a catalyst for faculty to exchange ideas and to solve critical problems that apply to fundamental aspects of cancer biology and lead clinical aspects in treating patients.

The director, co-directors and members of the Centers for Research Excellence are faculty in basic science departments at MD Anderson, including the Departments of Biochemistry and Molecular Biology, Cancer Biology, Carcinogenesis, Genetics, Immunology, and Molecular and Cellular Oncology.

Institute investigators are also actively involved in graduate education programs at The University of Texas Graduate School of Biomedical Sciences (GSBS) at Houston.

Website: http://www.mdanderson.org/basicsci

The Institute for Cancer Care Excellence

The Institute for Cancer Care Innovation studies new and existing models of cancer care delivery and reimbursement. Its programs are based around the principles of value-based health care delivery that focuses on the outcomes and costs of care. The Institute, formerly known as the Institute for Cancer Care Excellence, was created in 2008 to demonstrate the value of MD Anderson’s research-driven multidisciplinary care. The Institute has been at the forefront nationally and internationally for its innovative approaches to measurement of the value of our cancer care delivery system.
With programs designed to measure the outcomes and costs of the care we provide, the Institute provides essential strategies for maintaining MD Anderson’s preeminent position as the nation’s No. 1 provider of cancer care in the United States.

Institute for Personalized Cancer Therapy

The MD Anderson Cancer Center Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy was created to support preclinical research and clinical trials in which a patient’s tumor biopsy is assayed for abnormal genes and gene products to select therapy with agents targeting the product of those particular abnormal genes. This integrated research and clinical trials program is aimed at implementing personalized cancer therapy and improving patient outcomes. A number of events have converged creating a “perfect storm” offering the opportunity to make a bold leap forward in personalizing cancer care. Personalized cancer therapy includes all aspects of individualized patient management driven by characterization of tumor, microenvironment and host characteristics including diagnosis, surgery, chemotherapy, targeted therapy, radiation therapy, and immunological manipulation either alone or in concert.

The Red and Charline McCombs Institute

The McCombs Institute brings together leaders in biomedical research to focus on molecular-based approaches to cancer diagnosis and management.

The research centers in the McCombs Institute and throughout MD Anderson generate vast amounts of data on the relationships of specific genes and gene abnormalities with the development and progression of specific cancers. This data, coupled with the expertise and analysis provided by our Division of Quantitative Sciences, enables identification of critical steps in the cancer development process and the development of new diagnostic tests and cancer drugs to target them.

The McCombs Institute is bringing together thought leaders in six key areas of biomedical research to focus on molecular-based approaches to cancer diagnosis and treatment.

- Metastasis Research Center
- Center for Cancer Immunology Research
- Center for Radiation Oncology Research
- Center for Advanced Biomedical Imaging
- Center for Targeted Therapy
- Center for RNA Interference and Non-coding RNAs

Website: https://www.mdanderson.org/research/departments-labs-institutes/institutes/mccombs-institute.html
Metastasis Research Center

The Metastasis Research Program advances knowledge and research in the progression and spread of cancer. The Metastasis Research Center (MRC) is a multidisciplinary center run in parallel to MRP. The MRP/MRC consists of 30+ members from diverse departments contributing their knowledge to the field of metastasis biology. All major tumor sites are included in the MRP/MRC and members of the MRP/MRC are also members of other centers and programs throughout the institute; this leads to cross-fertilization of ideas and resources.

The main objectives are to 1) provide educational opportunities in the biology of metastasis, and 2) to provide support for novel research ideas. The MRP/MRC sponsors an annual retreat that is held in early December of each year.

The MRP/MRC examines subthemes including: 1) the tumor microenvironment, 2) genomics and genetics of metastasis, and 3) cancer stem cells and EMT.

Proton Therapy Center

Proton therapy benefits patients whose tumors are solid with defined borders, meaning the cancer has not spread to other parts of the body. The noninvasive treatment does not require surgery to remove the cancer, making it ideal for inoperable tumors.

The advantage of proton treatment is that the physician can control where the proton releases the bulk of its cancer-fighting energy. As the protons move through the body, they slow down and interact with electrons, and release energy. A physician can designate the location of the highest energy release, causing the most damage to the targeted tumor cells. A proton beam conforms to the shape and depth of a tumor, while sparing healthy tissues and organs.

The team at MD Anderson Proton Therapy Center continues to expand ways to use proton therapy to benefit patients. The team pioneered pencil beam proton therapy, also called scanning beam, and intensity modulated proton therapy (IMPT). We are one of the few centers worldwide offering these types of proton therapy to our patients.

Website: http://www.mdanderson.org/proton

Robert J. Kleberg, Jr. & Helen C. Kleberg Center for Molecular Markers

The overall research objective of the Robert J. Kleberg, Jr. & Helen C. Kleberg Center for Molecular Markers will be to identify the molecular markers that will allow a cancer specialist to diagnose cancer early and predict response to a particular treatment. The plan is to eventually be able to create a personalized treatment for each individual patient.

A major focus of the research is characterizing the molecular changes in cancer patients’ tumors by analyzing DNA, RNA and proteins in the tumors and in the blood. Molecular markers will help identify those at risk for cancer and provide information for screening and prevention measures. Doctors will also use the markers to select the best treatment with the fewest side effects for each patient.
MD ANDERSON SHARED RESOURCES

Cancer Center Support Grant Shared Resources

Bioinformatics

Summary
The Bioinformatics Shared Resource (BISR) provides consultation, collaboration, and support for researchers and core facilities throughout MD Anderson in the statistical analysis and biological interpretation of data from high-throughput pre-clinical technologies. This resource operates out of the Section of Bioinformatics in the Department of Biostatistics. The BISR has specialist expertise in the bioinformatics of all types of microarrays, next-generation sequencing, mass spectrometry, and flow cytometry. It is now easier, and often cheaper, to generate millions of data points on the molecular profiles of cancers than it is to analyze those data points statistically or interpret them biologically. With the revolution in DNA and RNA sequencing, the need for bioinformatics has increased exponentially, and the BISR is the institution’s principal resource for dealing with this data deluge.

Biostatistics Resource Group

Shared resources provide statistical collaboration and consultation to research scientists, support the Bayesian statistical computing needs of MD Anderson Cancer Center and assist with database design, development and administration.

Characterized Cell Line Core Facility

This facility provides cell line validation to avoid use of misidentified or cross-contaminated cell lines in cancer research. Cell lines that have been extensively characterized at the DNA, RNA and protein levels allow investigators to choose the correct cell line for their research. Pre-characterized cell lines decrease the cost to researchers since this will eliminate repeat analysis.

Clinical & Translational Research Center

The Clinical and Translational Research Center (CTRC) is MD Anderson’s dedicated unit to conduct early phase, complex, new drug research and develop new agents for the treatment of cancer and related diseases. CTRC is an on-site resource for M.D. Anderson investigators performing early clinical trials where patients receive intensive monitoring. A team of outstanding nurses, clinical, and laboratory staff implement CTRC-approved protocols. The CTRC is 8,600 square feet with 18 treatment rooms.

The CTRC Laboratory is housed within the CTRC unit to provide sample collection, processing, storage, and shipping to conduct pharmacology studies. Clinical investigation technicians collect and process blood and urine specimens for clinical trials.

Clinical Trials Support Resource

Resources and infrastructure supporting clinical research are consolidated in the Office of Protocol Research (OPR), which provides administrative support, regulatory affairs expertise, and information technology.
e-Health Technology

Multimedia applications for research and interventions

e-Health Technology supports technology-enabled primary, secondary, and tertiary cancer prevention research through the development and implementation of multi-media intervention and data-capture tools that address research questions in the areas of 1) behavior change, 2) health information, 3) symptoms, and 4) quality-of-life. e-Health Technology-developed products deliver information to and capture data from study participants and are tailored individually, consistent with study design.

The e-Health Technology resource:

- Provides the ability to reach a broad range of participants
- Serves as a hub for technology-enabled research and draws investigators from across MD Anderson
- Fosters collaborations among researchers from diverse disciplines
- Develops technology platforms and tools to support 17 active and completed projects, contributing to more than $20 million in research

Flow Cytometry and Cellular Imaging Core Facility

The Flow Cytometry and Cellular Imaging (FCCI) Core Facility was established in 1982 with the goal of providing the large community of investigators at MD Anderson with access to state-of-the-art cell analysis technology. The Core has expanded the number of technologies offered and in use by cancer center members. The FCCI Core now includes two separate sites: North Campus and South Campus facilities.

Institutional needs for flow cytometry services were carefully evaluated and a decision was made to transition the operation of the South Campus Flow Cytometry and Cell Sorting Facility to an institutional core to provide the Flow Cytometry and Cellular Imaging Core with sufficient capacity needed to support the institution’s investigators. Now, both the North and South Campus facilities are open to the entire MD Anderson research community.

RPPA Core Facility - Functional Proteomics

Reverse phase protein array (RPPA) is a high-throughput antibody-based technique developed for Functional Proteomics studies to evaluate protein activities in signaling networks. The RPPA Core provides services to perform such an assay for your studies.

Features of RPPA

- Cost effective
- High throughput
- Sensitive (detects ng of proteins)
- Accurate quantification
- Applicable to small sample sizes
Genetically Engineered Mouse Facility

The purpose of the Genetically Engineered Mouse Facility (GEMF) is to provide technologically advanced and efficient mouse mutation resources to faculty members at the institution. Modifications to the genome utilizing direct DNA injection and ES cell mutagenesis, cryopreservation, in vitro fertilization and rederivation of mouse lines are all technologies supported by the facility.

The facility is fully equipped with the latest instrumentation and staffed with highly skilled personnel trained specifically for the production of mutant mice.

High Resolution Electron Microscopy Facility

The High Resolution Electron Microscopy Facility (HREMF) provides a resource to the scientific community at MD Anderson for high resolution imaging of cells, tissues, organs or polymers containing cancer agents. The facility is located at the Smith Research Building (South Campus) and houses a JEM1010 transmission electron microscope (TEM), a JSM 5900 scanning electron microscope (SEM) equipped with electron backscatter detector, a Technontrade coating system, a Leica Ultramicrotome, Leica Ultrastainer and other accessories needed to prepare samples for SEM and TEM. A technician with histology training is available to assist researchers in defining their specific needs related to SEM and TEM. Microscopes are equipped with digital cameras and CD burners, and are connected to a network printer and the Internet. The facility operates on a charge-back basis only for processing of samples and the number of microscope hours used to screen samples with technical assistance.

Education

A detailed set of protocols is provided to the investigator regarding the preparation of samples for SEM and TEM. In the majority of cases the investigator fixes the sample with fixative prepared by HREMF staff and HREMF staff performs subsequent processing. Screening of samples with the assistance of technical support is recommended at all times. Background references on the particular investigation are usually requested by HREMF to ensure that the correct fixatives and specific information regarding the specimen is known before the analysis.

Monoclonal Antibody Core Facility

The Monoclonal Antibody Facility (MABF) provides custom monoclonal antibody production and purification to researchers at MD Anderson and beyond.

The main focus of the facility is to produce high-affinity antibodies in a high-throughput and effective manner, while concentrating on quality of product and service, as well as saving time and money for potential users.

By definition, “monoclonal antibodies (mAb) are antibodies that are identical because they were produced by one type of immune cell and are all clones of a single parent cell. Given (almost) any substance, it is possible to create monoclonal antibodies that specifically bind to that substance; they can serve to detect or purify that substance.”

mAbs have become an essential tool in biochemistry, molecular biology and medicine.
Mutant Mouse Pathology Service

The Mutant Mouse Pathology Service (MMPS) provides investigators with expert experimental pathology support. MMPS staff consult with investigators to formulate an integrated imaging, pathology and histology protocol for each study, with the goal of assuring customized, efficient and comprehensive data collection.

Nuclear Magnetic Resonance Facility

The NMR facility houses two state-of-the-art spectrometers for use in the determination of the structure of small molecules and biological macromolecules, reaction kinetics, macromolecule dynamics, metabolism, etc. Samples are analyzed either by individual users or by the facility manager.

Patient-Reported Outcomes, Survey and Population Research (PROSPR)

The Patient-Reported Outcomes, Survey & Population Research (PROSPR) Shared Resource provides researchers with access to state-of-the-art patient-reported outcome (PRO), quality of life, psychological and behavioral questionnaires and assessment methods. Services include assisting investigators in identifying existing measures, developing new measures and designing data collection strategies and conducting psychometric analysis. The PROSPR Shared Resource develops databases for the questionnaire data entry, participant tracking databases and computer- and Web-based assessments.

Research Animal Support Facility - Houston

The Research Animal Support Facility in Houston (RASFH) exists to serve the research programs of MD Anderson. The Department of Veterinary Medicine and Surgery (DVMS) is the core of the RASFH. Our primary mission is to provide the best possible veterinary care, facilities and services in support of the Institutional Animal Care and Use Program, in keeping with all applicable laws, regulations, guidelines, and AAALAC accreditation standards. The focus of the RASFH is the well-being of all animals, the best interests of our researchers, and the best interests of MD Anderson and its Animal Care and Use Program. As the institution’s research mission evolves and new animal research needs are identified, RASFH personnel identify new opportunities to participate in additional research support activities. Presently, the use of transgenic, SCID, and targeted mutant (knockout) mice and the associated new molecular programs represent such activities.

The RASFH consists of 3 centralized animal facilities providing housing for a wide variety of species. Our facilities have maintained full accreditation by the Association for the Assessment and Accreditation of Laboratory Animal Care International (AAALAC) since 1969.

Research Animal Support Facility - Smithville

The Research Animal Support Facility in Smithville (RASFS) provides support for animal-based research at MD Anderson Science Park Research Division (SPRD), Department of Carcinogenesis. Located in central Texas near Austin, the AAALAC-accredited RASFS is 150 miles from the main MD Anderson complex in Houston. RASFS investigators use primarily rodent animal models, i.e., mice, rats and hamsters, and over 200 mutant transgenic and knockout rodent lines are maintained in the RASFS. Included among these are models manifesting cancers of the prostate, mammary gland, uterus (fibroid), kidney, head and neck, skin (including the
Xiphophorus fish melanoma model), biliary tract, urinary bladder and lymphoreticular system.

Research Histopathology Facility

At MD Anderson, peer-funded research projects that require histologic analysis have been provided with slide preparation by a shared resource facility since 1981. The Research Histopathology Facility (RHF) supplies technical support and consultation, develops and applies appropriate technologies, and maintains the consistency and high quality necessary to perform these techniques. In addition to standard histologic techniques, the spectrum of services provided by the RHF has been continually broadened to meet the requirements of MD Anderson investigators. This expansion of service includes an increase in special stains, frozen sectioning, RNase procedures and immunohistochemical staining and preparations.

Sequencing and Microarray Facility (SMF)

Core Lab Consolidation

The consolidated Sequencing and Microarray Facility supports genomics research by providing investigators with access to state-of-the-art instrumentation and a high level of technical expertise in a centralized facility, minimizing the duplication of expensive equipment, maintaining technical excellence and enhancing research collaborations. The facility's primary focus is sequencing and microarray technologies.

The facility provides investigators with next generation sequencing, microarray services and project consultation.

shRNA and ORFeome Core

The discovery of short hairpin RNAs (shRNAs) suppressing gene expression in mammalian cells enables large-scale loss-of-function screens by using genome-wide shRNA libraries. Genome scale over-expression libraries allow large-scale gain-of-function screens. The shRNA and ORFeome core makes available human and mouse shRNA libraries. The core facility can provide individual shRNA plasmids and cDNA clones for MD Anderson laboratories, or carry out a screening experiment using the libraries. Purchase of clones or libraries through the shRNA and ORFeome core reduces costs and decreases turnaround time for researchers.

Small Animal Imaging Facility

The Small Animal Imaging Facility (SAIF) is a core research resource that provides comprehensive imaging support services for MD Anderson cancer investigators, including:

- Assistance in experimental design
- Developing specialty equipment and innovative procedures for imaging
- Preparing animals for studies, inducing and maintaining appropriate anesthesia and immobilization of animals during imaging
- Processing and interpreting data for publication or grant preparation
Tissue Biospecimen & Pathology Resource

The Tissue Biospecimen and Pathology Resource (TBPR) is a well-established, mature CCSG-supported core facility that provides access by all basic science, translational, and clinical investigators to human tissues that have been removed by therapeutic resection or biopsy. Benign and malignant tumor and non-neoplastic and normal control tissue from the entire spectrum of available specimens are obtained and temporarily stored. The TBPR supports hypothesis-generating, -developing, and -testing studies, including both correlative and integrated marker studies in clinical trials.

OTHER MD ANDERSON CORES

Other MD Anderson Core Resources include:

Biospecimen Extraction Facility

The Biospecimen Extraction Resource provides a centralized laboratory for standardized, high-quality DNA, RNA and protein extraction from blood, tissues, cells, or other patient-derived biospecimens. Additional services include DNA gel electrophoresis, Pico-green DNA quantitation, and whole blood processing for lymphocytes and plasma. Our facility is utilized by both lab-based investigators who want fast turn-around time for standardized and high-quality extractions or whole blood processing and non-lab based investigators (majority are clinicians) who are in great need of the service of sample processing. We work very closely with the Sequencing and Microarray Facility (SMF) and the DNA/RNA samples extracted from us can be submitted directly from our core to SMF.

Bone Histomorphometry Core Laboratory

The Cancer Genomics Core Lab makes genomics technologies accessible to MD Anderson investigators at a reasonable cost.

Core lab personnel closely interact with investigators in RNA quality control, microarray result validation and protein microarrays. We provide support to MD Anderson investigators and a number of external collaborators in the areas of microarray, SAGE, SNP, real-time PCR, imaging and data analysis.

Cancer Genomics Core Laboratory

The Cancer Genomics Core Lab makes genomics technologies accessible to MD Anderson investigators at a reasonable cost.

Core lab personnel closely interact with investigators in RNA quality control, microarray result validation and protein microarrays. We provide support to MD Anderson investigators and a number of external collaborators in the areas of microarray, SAGE, SNP, real-time PCR, imaging and data analysis.

Keeling Center for Comparative Medicine and Research

The University of Texas MD Anderson Cancer Center established the Veterinary Sciences Division of the Science Park in 1975. The center provides a wide range of veterinary services and develops specialized animal species to support biomedical research. It conducts research
aimed at improving the care and management of these resources and research to improve human health.

Located on 381 acres near Bastrop, Texas, it was renamed the Michale E. Keeling Center for Comparative Medicine and Research in honor of the late Michale E. Keeling, D.V.M., the first director of the center.

The facility offers training opportunities for undergraduate, graduate and veterinary medical students from several universities, including The University of Texas MD Anderson Cancer Center, The University of Texas at Austin and Texas A&M University.

The Keeling Center has led the way at MD Anderson by developing a Good Laboratory Practice (GLP) research program that provides an essential part of the institute’s translational research program.

Molecular Cytogenetics Facility

The T. C. Hsu Molecular Cytogenetics Core facility offers conventional as well as molecular cytogenetic services including cell line authentication, species identification, karyotyping, analysis of genomic instability, fluorescence in situ hybridization and Spectral Karyotyping. A key expertise of our facility is to validate the origin of cell lines. Unlike other methods, chromosomal analysis is able to unambiguously identify cells from all common mammalian species and can also differentiate between cells from the same species. This analysis can therefore identify intra-species and inter-species cell line contaminations.

Multiphoton Microscopy Core

There is an ever-increasing demand to do in vivo imaging, particularly live organ and live animal imaging for biomedical and clinical studies. Multiphoton microscopy provides a glimpse of real-time biology, making it ideal for application in almost all the fields of biomedical research and clinical study. The core offers multiphoton microscopy imaging, training in the technique and consultation on experimental design and approach.

Sequencing and Non-Coding RNA Program

This program, a service of the Center for Targeted Therapy, offers MD Anderson investigators cutting-edge, emerging technology and expertise in functional genomics for the discovery of new non-coding RNAs (ncRNA) and expression profiling for known ncRNAs to further their cancer research.

The study of non-coding RNAs (ncRNAs), and specifically microRNAs (miRNAs), represents one of the most active research areas in molecular biology and continues to shed light on the human genome. Non-coding RNAs are molecules that are not translated into proteins and they play an important role in cancer initiation, progression and metastases. Already miRNAs have shown promise as diagnostic and prognostic markers in cancer and as targets for the development of new therapeutic approaches.

Proteomics Facility

This facility provides state-of-the-art mass spectrometry analysis of proteins for both basic and clinical cancer research. We work with internal as well as external researchers. Proteomics...
includes not only the analysis of all expressed protein analysis but also traditional protein structural studies such as protein identification, post-translational modification, protein-protein interactions and other functional interests related with protein structure.

Protocol Review and Monitoring

The primary goal of the Protocol Review and Monitoring System (PRMS) is to ensure that all human-subjects research is of the highest scientific quality possible. The functions of the PRMS are supported by the staff and management in the Office of Protocol Research (OPR), which resides within the Office of the Vice President, Clinical Research (OCR).

Science Park Shared Resources, Cores and Services

The Department of Molecular Carcinogenesis at Science Park has a number of shared resources and cores that provide services to members of the department, researchers from other MD Anderson Cancer Center departments in Bastrop and Houston, as well as other Central Texas institutions such as the University of Texas at Austin. These include molecular biology and protein analysis, cell and tissue analysis, histology and pathology, animal facilities and bioinformatics and statistics.
The Texas Medical Center (TMC) is the largest comprehensive medical complex in the world. It was organized in 1945 as a means for coordinating medical and health education, patient care, and related research in a not-for-profit setting. Today it stands as the leading health care destination globally with an average of 8 million patient visits a year.

TMC comprises 21 renowned hospitals containing a total of more than 9200 licensed beds, 14 support organizations, 10 academic institutions, eight academic and research institutions, seven nursing programs, three public health organizations, three medical schools, two pharmacy schools, and a dental school. A high school for the health professions and a community college specializing in health careers training plus other graduate and post-graduate schools and programs provide training in the allied health professions. Nearly 72,000 students work and study within the TMC.

More than 160 permanent buildings, not including Rice University, occupy nearly 1,000 acres that include 15 patient care facilities and 21 academic and research institutions, housing 20,000 advanced-degreed professionals in the life sciences. There are approximately 12,000 volunteers who assist with a wide variety of tasks benefiting the TMC.

The Texas Medical Center Library (TMC Library), which serves as the accredited library for most of the TMC institutions, is recognized as one of the largest academic health sciences libraries in the U.S. In addition, research expenditures of the Texas Medical Center member institutions total about $1.8 billion annually.

One of the most distinctive and visited locations in the Texas Medical Center is The John P. McGovern Texas Medical Center Commons amenities building, which is the central meeting and gathering place for thousands of staff, patients and visitors who frequent the campus daily. It features an exterior 64-foot waterwall; Waterside Court, which provides eight diverse food concepts; Third Coast restaurant for fine dining, meetings and special events; and a 500-space parking garage. The Graduate School of Biomedical Sciences is located next door to the Commons.

A major part of this “biomedical city” is UTHealth, the most comprehensive and diverse of the academic health institutions in the Texas Medical Center with six schools, three faculty practice plans, three institutes, myriad centers of excellence and a psychiatric hospital.
UNIVERSITY CAMPUS MAP
IN THE TEXAS MEDICAL CENTER

UTHealth Main Campus Map:
MEMORIAL HERMANN TEXAS MEDICAL CENTER, CHILDREN’S MEMORIAL HERMANN HOSPITAL AND MEMORIAL HERMANN ORTHOPEDIC & SPINE HOSPITAL

The Memorial Hermann-Texas Medical Center (TMC) Campus is home to three hospitals: Memorial Hermann–Texas Medical Center, Children’s Memorial Hermann Hospital and Hermann Orthopedic & Spine Hospital.

Part of the 14-hospital Memorial Hermann Health System, Memorial Hermann-TMC and Children’s Memorial Hermann Hospital serve as primary teaching hospitals for McGovern Medical School at Houston, ensuring that patient care is based on new knowledge at the frontiers of medicine.

Memorial Hermann-Texas Medical Center

For generations, Houston and its surrounding communities have trusted Memorial Hermann-TMC for outstanding care. Memorial Hermann-TMC has built a reputation for excellence in heart and vascular, cancer, neuroscience, sports medicine and orthopedics, specialty surgery and organ transplantation.

As the first hospital to open its doors in the renowned Texas Medical Center, Memorial Hermann-TMC has a long history of innovation. These are just a few of its firsts: In 1946, Memorial Hermann-TMC was the first in Texas to perform a cardiac catheterization. In 1976, the hospital was the first in Texas and the second in the nation to launch an air ambulance program, Memorial Hermann Life Flight®, which remains Houston’s only hospital-based air ambulance service. In 1985, Memorial Hermann-TMC broke new ground in the treatment of end-stage liver disease as the site of Houston’s first liver transplant. In 1988, the hospital opened the first stroke center in Houston and one of the first dedicated stroke programs in the world. In 2005, Memorial Hermann-TMC was the first in the world to perform robotic reconstructive aortic surgery. In 2006, Memorial Hermann-TMC performed the first four-organ transplant in Houston and only the fourth in the nation. In 2011, Memorial Hermann-TMC gained worldwide recognition for the treatment of then U.S. Congresswoman Gabrielle Giffords where UTHealth faculty led the treatment team at the Memorial Hermann Mischer Neuroscience Institute.

Through revolutionary advances in medicine and surgery, Memorial Hermann-TMC set new standards of care for the nation and has been recognized as an industry leader by prestigious national organizations, including the University Health System Consortium, the LeapFrog Group and the American Heart/American Stroke Association. The Memorial Hermann-TMC Campus is also Magnet® recognized for excellence in nursing services by the American Nurses Credentialing Center.

Children’s Memorial Hermann Hospital

Children’s Memorial Hermann Hospital treats patients with the technological advances and healing expertise of a university-affiliated academic hospital, while providing compassionate care for children and their families.

Children’s Memorial Hermann Hospital is the primary teaching institution for the pediatrics and obstetrics/gynecology programs at McGovern Medical School. The hospital’s healthcare professionals are focused on the specialized needs of women and children, with an emphasis on quality, customer service and leading-edge research.
The hospital offers the latest advances in maternal-fetal medicine and neonatal critical care services, as well as renowned programs in pediatric trauma, neuroscience, pulmonology and cardiac services. Interdisciplinary teams include experienced nurses, child life specialists, pediatric respiratory therapists, pediatric clinical pharmacists, social workers and more. In 2012, Children’s Memorial Hermann Hospital became the first in Texas to perform in-utero surgery in the treatment of Spina Bifida.

As part of Memorial Hermann’s network of hospitals, patients can access children’s healthcare or high-risk pregnancy services at our affiliated hospitals in the community or, for more acute healthcare needs, at Children’s Memorial Hermann Hospital’s main facility in the Texas Medical Center.

Memorial Hermann Orthopedic & Spine Hospital

Memorial Hermann Orthopedic & Spine Hospital brings Memorial Hermann’s exemplary standards for patient safety, quality and excellence to a facility that is focused solely on orthopedic and spine care. Memorial Hermann Orthopedic & Spine Hospital is dedicated to the highest quality service, easy access and optimum outcomes for patients undergoing orthopedic and spine surgery.

The staff at Memorial Hermann Orthopedic & Spine Hospital is specially trained and dedicated to helping patients undergo inpatient procedures that restore or improve functionality and allow them to return to an active lifestyle. The convenient central location and small size make it ideal for outpatient surgery and services such as knee, shoulder and hip arthroscopy as well as pain management and rehabilitation.

At Memorial Hermann Orthopedic & Spine Hospital, patients have access to the very latest surgical technology, including minimally invasive, arthroscopic and endoscopic procedures, as well as computer-assisted guidance for joint surgery and spine surgery. The hospital offers a wide variety of inpatient and outpatient orthopedic and neuro-spine services.

Onsite imaging services (radiology, MRI, CT, fluoroscopy and digital X-ray), in addition to physical and occupational therapy, translate to convenience for patients both pre- and post-operatively. Patients also have a choice to rehabilitate close to home with Memorial Hermann’s extensive network for physical therapy at convenient locations throughout the Greater Houston area.

Website of Memorial Hermann locations:
http://www.memorialhermann.org/locations

Texas Medical Center Library

The Texas Medical Center Library (TMC Library) serves as the accredited library for most Texas Medical Center institutions and is the primary library for The University of Texas Health Science Center at Houston (UTHealth) students. The Library is also home to the John P. McGovern Historical Collections and Research Center, consisting of rare books ranging from the 1500s to the early 20th century, and digital and manuscript collections related to healthcare. The mission of the library is to bring together resources, information, and expertise to provide innovative support for the acquisition, management, and delivery of biomedical knowledge to the institutions of the Texas Medical Center.
Currently, the library subscribes to 85 electronic databases, over 10,000 electronic journals, and 60,000 e-books, which are available through the library’s website after registration through the library. Major subscription databases include: Clinical Key, Psychiatry Online, Access Medicine, CINAHL, JAMA Evidence, and Visual DX. Additionally, the library provides access to an index of over 200 Open Access databases.

The library occupies substantial space in the Jesse Jones Library Building, adjacent to the McGovern Medical School and within close proximity to the other UTHealth schools. The library is open seven days, 89 hours per week. The library contains group study spaces, an open computer lab, and quiet study spaces. Library computers are equipped with Microsoft Office applications, and Wi-Fi access is available throughout the library. Liaison librarians are available to answer library-related questions, provide instruction regarding access to library resources, assist with literature search strategies, and teach classes on database and literature searching, citation management, evidence-based practice, and systemic reviews.

Website: http://www.library.tmc.edu/

Research Medical Library of MD Anderson

The Research Medical Library provides information resources and specialized services to MD Anderson faculty, staff, and all GSBS students to further the institution’s programs in patient care, research, education, and prevention. The main Library is located on the 21st floor of the Pickens Academic Tower with satellite locations on South Campus (SCRB4) and in Smithville and Bastrop.

The Library is also home to the Historical Resources Center (HRC), which was established in 2000 as the official archival repository for institutional records, personal papers, photographs, videos, oral history interviews, and other materials that document MD Anderson’s role in advancing cancer medicine, science, and public policy. It also encompasses the History of Cancer Collection of rare books, journals, monographs, and other published material.

The Library offers more than 100,000 print and electronic books; 5,500 electronic journals; 150 online databases; free interlibrary loans and expert searching; classes on PubMed, Scopus, and EndNote; and an embedded librarian in the School of Health Professions.
Facilities – Pickens Academic Tower

- Occupies entire 21st floor of the T. Boone Pickens Academic Tower: 18,173 square feet
- Collaborative classroom with 18 laptops
- Videoconference/seminar room with capacity for 24 conference/42 theater style
- Three group study rooms with computer and whiteboard
- 46 public computers
- 166 total seating capacity

Facilities – SCRB4

- Located on the 1st floor of the South Campus Research Building 4: 5,170 square feet
- Two meeting rooms equipped with collaborative MediaScape Table technology
- One “demo room” for small group hands-on instruction
- Six public computers
- Six laptops available for in-building checkout
- Book pick-up and drop-off services

Smithville

- Located on the campus of Science Park in Smithville, the Library has four networked study carrels including three Macs and one PC
- Two reading areas with journal and textbook collections
- A meeting/reading room with white board and seating for six
- Library liaison service provided by the Outreach Coordinator based in Houston

Bastrop

- Located on the campus of the Michale E. Keeling Center for Comparative Medicine and Research in Bastrop, the Library has seating for 8 including video and teleconferencing capabilities
- Journal and textbook collections
- Library liaison service provided by the Outreach Coordinator based in Houston

Website: http://www3.mdanderson.org/library/
Degrees offered at The University of Texas Health Science Center at Houston

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>School of Dentistry</td>
<td>D.D.S.</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Oral and Maxillofacial Surgery Certificate (4 years post-DDS)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oral and Maxillofacial Surgery Certificate/MD* (6 years post-D.D.S.)</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>*MD degree conveyed by McGovern Medical School</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Education Programs</td>
<td>General Practice Residency (GPR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Advanced Education in General Dentistry (AEGD) (certificate only):</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.S.D*. Endodontics, Periodontics, Prosthodontics (*M.S.D. is required in these programs in addition to the certificate); Orthodontics, Pediatric Dentistry (certificate program, M.S.D. is optional)</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>B.S. in Dental Hygiene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dental Hygiene Certificate Program</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Graduate School of Biomedical Sciences</td>
<td>M.S. in Biomedical Sciences (with concentrations in Biochemistry and Molecular Biology; Biostatistics, Bioinformatics and Systems Biology; Biomedical Sciences; Cancer Biology; Cell and Regulatory Biology; Clinical and Translational Sciences; Epigenetics and Molecular Carcinogenesis, Experimental Therapeutics; Genes and Development; Genetic Counseling; Human and Molecular Genetics; Immunology; Medical Physics; Microbiology and Molecular Genetics; Neuroscience)</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>Graduate School of Biomedical Sciences</td>
<td>Ph.D. in Biomedical Sciences (with concentration in Biochemistry and Molecular Biology; Biostatistics, Bioinformatics and Systems Biology; Cancer Biology; Cell and Regulatory Biology; Clinical and Translational Sciences; Epigenetics and Molecular Carcinogenesis; Experimental Therapeutics; Genes and Development; Human and Molecular Genetics; Immunology; Medical Physics; Microbiology and Molecular Genetics; Neuroscience)</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>School of Biomedical Informatics</td>
<td>Certificate (in Biomedical Informatics)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.S. in Biomedical Informatics (Focus areas in Applied Health Informatics, Biomedical Engineering, Clinical Informatics, Computational Biomedicine, Learning and Technology and Public Health Informatics)</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ph.D. in Biomedical Informatics (Focus areas in Biomedical Engineering, Clinical Informatics, Computational Biomedicine, Learning and Technology and Public Health Informatics)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>McGovern Medical School</td>
<td>M.D.</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.S. in Clinical Research</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>School of Nursing</td>
<td>B.S.N.</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.S.N.</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ph.D. (in Nursing)</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D.N.P.</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>School of Public Health</td>
<td>M.P.H. (in Public Health)</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.S. (in Public Health)</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dr.P.H. (in Public Health)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ph.D. (in Public Health)</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Certificate in Public Health</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Certificate in Public Health Informatics</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
Accreditation at UTHealth

The University of Texas Health Science Center at Houston is accredited by the Southern Association of Colleges and Schools Commission on Colleges to award certificate, baccalaureate, masters, doctorate and professional degrees. Contact the Commission on Colleges at 1866 Southern Lane, Decatur, Georgia 30033-4097 or call 404-679-4500 for questions about the accreditation of The University of Texas Health Science Center at Houston.

While SACS accredits the total institution, many of the academic degree programs offered at UTHealth also undergo accreditation by specialized accrediting bodies, including:*

<table>
<thead>
<tr>
<th>School</th>
<th>Degree or Certificate</th>
<th>Accrediting agency</th>
</tr>
</thead>
<tbody>
<tr>
<td>School of Dentistry</td>
<td>D.D.S.</td>
<td>American Dental Association Commission on Dental Accreditation</td>
</tr>
<tr>
<td></td>
<td>M.S.</td>
<td>American Dental Association Commission on Dental Accreditation</td>
</tr>
<tr>
<td></td>
<td>Advanced Education Certificate Program</td>
<td>American Dental Association Commission on Dental Accreditation</td>
</tr>
<tr>
<td></td>
<td>B.S. (Dental Hygiene)</td>
<td>American Dental Association Commission on Dental Accreditation</td>
</tr>
<tr>
<td></td>
<td>Dental Hygiene Certificate Program</td>
<td>American Dental Association Commission on Dental Accreditation</td>
</tr>
<tr>
<td>Graduate School of Biomedical Sciences</td>
<td>M.S. with specialization in Genetic Counseling</td>
<td>American Board of Genetic Counseling</td>
</tr>
<tr>
<td></td>
<td>M.S. with specialization in Medical Physics</td>
<td>Commission on Accreditation of Medical Physics Education Programs</td>
</tr>
<tr>
<td></td>
<td>M.S.</td>
<td></td>
</tr>
<tr>
<td>McGovern Medical School</td>
<td>M.D.</td>
<td>American Medical Association/ Association of American Medical Colleges Liaison Committee on Medical Education (LCME)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Accreditation Council for Graduate Medical Education (ACGME)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Accreditation Council for Continuing Medical Education (ACCME)</td>
</tr>
<tr>
<td></td>
<td>M.S. in Clinical Research</td>
<td></td>
</tr>
<tr>
<td>School of Biomedical Informatics</td>
<td>M.S.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ph.D.</td>
<td></td>
</tr>
<tr>
<td>School</td>
<td>Degree or Certificate</td>
<td>Accrediting agency</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>School of Nursing</td>
<td>B.S.N.</td>
<td>Commission on Collegiate Nursing Education</td>
</tr>
<tr>
<td></td>
<td>M.S.N.</td>
<td>Commission on Collegiate Nursing Education</td>
</tr>
<tr>
<td></td>
<td>Nurse Anesthesia</td>
<td>Council on Accreditation of Nurse Anesthesia Educational Programs</td>
</tr>
<tr>
<td></td>
<td>D.N.P.</td>
<td>Commission on Collegiate Nursing Education</td>
</tr>
<tr>
<td></td>
<td>Ph.D. (Nursing)</td>
<td></td>
</tr>
<tr>
<td>School of Public Health</td>
<td>M.P.H.†</td>
<td>Council on Education for Public Health</td>
</tr>
<tr>
<td></td>
<td>M.S.†</td>
<td>Council on Education for Public Health</td>
</tr>
<tr>
<td></td>
<td>Dr.P.H.</td>
<td>Council on Education for Public Health</td>
</tr>
<tr>
<td></td>
<td>Ph.D.</td>
<td>Council on Education for Public Health</td>
</tr>
<tr>
<td></td>
<td>M.P.H. (Industrial Hygiene)</td>
<td>The Applied Science Accreditation Commission of the Accreditation Board for Engineering and Technology</td>
</tr>
</tbody>
</table>

The University of Texas Health Science Center at Houston is also accredited by the Accreditation Council for Continuing Medical Education (ACCME) to sponsor continuing medical education for physicians.

† The Industrial Hygiene curriculum in the MPH and MS degree programs is accredited by the Applied Science Accreditation Commission of the Accreditation Board for Engineering and Technology (ABET), 111 Market Place, Suite 1050, Baltimore, MD 21202-4012, telephone: (410) 347-7700.
Degrees Offered at The University of Texas MD Anderson Cancer Center

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Graduate School of Biomedical Sciences</td>
<td>M.S. in Biomedical Sciences (with concentrations in Biochemistry and Molecular Biology; Biostatistics, Bioinformatics and Systems Biology; Biomedical Sciences; Cancer Biology; Cell and Regulatory Biology; Clinical and Translational Sciences; Epigenetics and Molecular Carcinogenesis, Experimental Therapeutics; Genes and Development; Genetic Counseling; Human and Molecular Genetics; Immunology; Medical Physics; Microbiology and Molecular Genetics; Neuroscience)</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Graduate School of Biomedical Sciences</td>
<td>Ph.D. in Biomedical Sciences (with concentration in Biochemistry and Molecular Biology; Biostatistics, Bioinformatics and Systems Biology; Cancer Biology; Cell and Regulatory Biology; Clinical and Translational Sciences; Epigenetics and Molecular Carcinogenesis; Experimental Therapeutics; Genes and Development; Human and Molecular Genetics; Immunology; Medical Physics; Microbiology and Molecular Genetics; Neuroscience)</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>School of Health Professionals</td>
<td>Clinical Laboratory Science</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cytogenetic Technology</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cytotechnology</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diagnostic Imaging</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Histotechnology</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Medical Dosimetry</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Molecular Genetic Technology</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Radiation Therapy</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Accreditation at MD Anderson

The University of Texas MD Anderson Cancer Center is accredited by the Southern Association of Colleges and Schools Commission on Colleges to award baccalaureate, masters, and doctoral levels. Contact the Commission on Colleges at 1866 Southern Lane, Decatur, Georgia 30033-4097 or call 404-679-4501 for questions about the accreditation of The University of Texas MD Anderson Cancer Center.
Many of the academic degree programs offered at MDACC undergo accreditation by specialized accrediting bodies* as follows:

<table>
<thead>
<tr>
<th>School/Program</th>
<th>Degree</th>
<th>Accrediting Agency</th>
</tr>
</thead>
<tbody>
<tr>
<td>The University of Texas MD Anderson Cancer Center School of Health Professions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cytogenetic Technology</td>
<td>B.S.</td>
<td>National Accrediting Agency for Clinical Laboratory Sciences</td>
</tr>
<tr>
<td>Clinical Laboratory Science</td>
<td>B.S.</td>
<td>National Accrediting Agency for Clinical Laboratory Sciences</td>
</tr>
<tr>
<td>Diagnostic Imaging</td>
<td>B.S.</td>
<td>Joint Review Committee on Education In Radiologic Technology</td>
</tr>
<tr>
<td>Histotechnology</td>
<td>B.S.</td>
<td>National Accrediting Agency for Clinical Laboratory Sciences</td>
</tr>
<tr>
<td>Cytotechnology</td>
<td>B.S.</td>
<td>Commission on Accreditation of Allied Health Education Programs</td>
</tr>
<tr>
<td>Medical Dosimetry</td>
<td>B.S.</td>
<td>Joint Review Committee on education in Radiologic Technology</td>
</tr>
<tr>
<td>Molecular Genetic Technology</td>
<td>B.S.</td>
<td>National Accrediting Agency for Clinical Laboratory Sciences</td>
</tr>
<tr>
<td>Radiation Therapy</td>
<td>B.S.</td>
<td>Joint Review Committee on Education In Radiologic Technology</td>
</tr>
</tbody>
</table>

| The University of Texas Graduate School of Biomedical Sciences at Houston |
| American Board of Medical Genetics |
| American Association of Physicists in Medicine |

* The University of Texas MD Anderson Cancer Center is also accredited by the Accreditation Council for Continuing Medical Education (ACCME) and the Accreditation Council for Graduate Medical Education (ACGME).

UTHealth Academic Qualifications

In accordance with federal Department of Education guidelines, in order to receive Title IV financial aid funds, a student must be qualified to study at the postsecondary level. A student qualifies if he/she:

- Has a high school diploma;
• Has the recognized equivalent of a high school diploma, typically a general education development GED certificate;

• Has completed home schooling at the secondary level; or

• Has an academic transcript of a student who has successfully completed at least a two-year program that is acceptable for full credit toward a bachelor’s degree.

Academic Fresh Start

If a student who enrolls under the Texas Fresh Start program, completes a prescribed course of study, earns a baccalaureate degree, and applies for admission to a postgraduate or professional program, the institution, in considering the applicant for admission into the postgraduate or professional program, shall consider only the grade point average of the applicant established by the course work completed after enrollment under the Texas Fresh Start program, along with any other criteria the institution uses in evaluation applications for admission.

Academic Common Market

The Academic Common Market (ACM) is an interstate agreement among southern states participating in the Southern Regional Education Board (SREB). The ACM is a tuition-savings program for college students in participating states who want to pursue degrees that are not offered by their in-state institutions. Participating states arrange for their residents who qualify for admission to enroll in specific programs in other states on the in-state tuition basis. More information on the ACM can be found on the ACM website at http://www.sreb.org/academic-common-market.

Tuition and Fees

Tuition and fees are subject to change and become effective on the date enacted. The Texas Legislature does not set the specific amount for any particular student fee. Student fees are authorized by state statute; the specific fee amounts and the determination to increase fees are made by the university administration and The University of Texas System Board of Regents.

Please refer to the Office of Registrar website at https://www.uth.edu/registrar/current-students/registration/fee-schedule.htm for the current Tuition and Fee Schedules.

For additional tuition and fee information go to the Office of the Registrar’s website under Current Students/Student Information for a list of general information helpful to all students. This website reflects current information regarding tuition and fee exceptions and/or waivers, Veterans education benefits, and the Policy for Texas Resident Tuition. Please refer to the Office of Registrar website at https://www.uth.edu/registrar/current-students/fee-schedule.htm to view this information.

Tuition and Fees Payment Policy

Payment of tuition and fees is due no later than payment due date. Due dates are listed on the charges tab of the student “MyUTH” account or are available on the Registrar’s website at https://www.uth.edu/registrar/registration/payment-methods.htm

Students must pay 50% of tuition and fees before the 20th day of the term for fall and spring and before the 15th day of the term for summer or their enrollment will be cancelled for that term. Students whose registration is cancelled because of non-payment or issuing an insufficient
A returned check fee of $25.00 will be assessed for each returned check (including “e-checks”).

Students who have fees billed to a sponsor are financially responsible for any charges determined to be uncollectible by the Bursar’s Office. Furthermore, extended delays in collection of receivables from sponsors will require the student to make the uncollected payment. Student payments will be refunded upon receipt of payment from the sponsor.

Payment of tuition and fees may be paid in full or in installments for the fall, spring and summer 12-week semester. A nonrefundable Installment Use Fee of $20 will be assessed for the use of the installment plan. A $25 Late Payment Fee will be assessed if the initial payment is late; a $25 charge will be assessed for each subsequent delinquent installment payment. Certain fees, such as health insurance, liability insurance and the installment use fee are not installable and must be paid in full at the initial payment. Check with the Bursar’s Office for a complete list of non-installable fees.

A student who fails to provide full payment of tuition and fees, including late fees assessed by the university, when the payments are due, is subject to one or more of the following actions:

- Prohibited from registration in future terms until full payment is made,
- Withholding of degree and/or official transcript,
- May be denied credit for the work done during the academic year, and
- Subject to all penalties and action authorized by law.

For more information regarding tuition and fee payment, installment plans and payment methods please contact:

Bursar’s Office
The University of Texas Health Science Center at Houston
University Center Tower
7000 Fannin, Suite 2240
713-500-3380

Bursar Website: https://inside.uth.edu/finance/bursars/student/tuition-and-fees.htm

Adding, Dropping and Withdrawing Courses

For all programs other than McGovern Medical School (MD) and Dentistry (DDS), students may add and drop classes after initial enrollment period during the first twelve days of the fall and spring semesters and during the first four days of the summer term. Students withdrawing from classes after the initial drop/add period must submit a drop form that may be obtained from the Student Affairs Office in each school or from the Office of the Registrar.

Classes dropped on or before the 12th class day of a semester or 4th class day of a summer term will not appear on a student’s transcript. Classes dropped after the 12th class day of a semester or the 4th class day of a summer term will appear on the student’s transcript with a “W”, “WP” or “WF” grade, depending upon the school’s grading policy.
Students should check with their school advisor(s) to ensure that the appropriate specific program approvals, guidelines and deadlines for add, drop or withdrawals from courses are followed.

Refunds for classes dropped will be credited in strict accordance to the schedule specified by state law and will depend on the number of days that have elapsed since the beginning of the semester or term. Please see Refund Policy section for additional information.

Class Schedule Contents with add/drop and information can be found on MyUTH class search.

Refund Policy

All programs at UTHealth follow a standard Refund Policy based on the first day of the semester term. Provided the student remains enrolled at the institution, refunds of applicable tuition and fees collected for courses from which a student drops will be made after the add/drop period closes. Add/drop ends after the 12th day of the term for the fall and spring semesters and after the 4th day of the summer term for each session.

All refunds will be based on the day the student drops the course(s) electronically through MyUTH (http://www.uthouston.edu/index/myuth.htm) or the date the official withdrawal form is received in the Registrar’s Office.

Refunds of tuition and mandatory fees shall be made to the students withdrawing completely from UTHealth during a semester according to the following schedules. The percent refunded is based upon the full payment of all tuition and fees. If full payment has not been made, it is possible that a balance may be due. Not all fees are refundable beyond the first day of the term. Tuition reassessment refunds will be made after the 20th class day.

Prior to the first day of the session

(fall, spring, 12 week summer semesters)	100%
During the first five class days of the term	80%
During the second five class days of the term	70%
During the third five class days of the term	50%
During the fourth five class days of the term	25%
After the fourth five class days of the term	None

(6 week summer semester)	None
Prior to the first day of the session	100%
During the first, second, or third class days of the session	80%
During the fourth, fifth, or sixth class days of the session	50%
After the seventh day of class and thereafter	None

All policies regarding the payment or refund of tuition, fees and charges are approved by The University of Texas System Board of Regents and comply with all applicable state statutes. Students should contact the Bursar’s Office on any clarification of matters relating to payment or refunds of all tuition, fees and other charges associated with their enrollment at UTHealth.

Bursar Office
The University of Texas Health Science Center at Houston
UTHealth Teaching Affiliations

UTHealth continually strives to increase the number of formal educational affiliation agreements with other institutions and agencies in the greater Houston area and the state, including a dozen major hospitals, city and neighborhood clinics, public schools, and other sites that provide settings for clinical services. These agreements allow students a multiple array of opportunities for educational growth in health-related fields.

Memorial Hermann Hospital is the primary teaching affiliate of McGovern Medical School and the School of Dentistry. Memorial Hermann Hospital and UTHealth work toward the goals of exemplary patient care, innovative teaching, community service, and productive research. The School of Dentistry operates general practice, pediatric dentistry, and oral and maxillofacial surgery clinics in conjunction with Memorial Hermann Hospital as part of the advanced dental education programs.

Lyndon B. Johnson General Hospital is a 332-bed full service general hospital staffed by faculty and residents of McGovern Medical School and the School of Dentistry (oral surgery only). The hospital, owned and operated by the Harris County Hospital District, is medically staffed by Affiliated Medical Services, an organization formed through an agreement between McGovern Medical School and Baylor College of Medicine.

The University of Texas MD Anderson Cancer Center and UTHealth, together with the Texas A&M Institute of Biosciences and Technology, collaborate extensively in research and education. Many of MD Anderson Cancer Center faculty have joint appointments in most UTHealth units, and UTHealth students and residents gain clinical experience at MD Anderson Cancer Center in a variety of medical, dental and nursing specialties.

McGovern Medical School has affiliations with more than fifteen institutions where residents rotate for their training, including the Memorial Hermann Hospital System for most of the 110 training programs; Lyndon B. Johnson Hospital; MD Anderson Cancer Center; Harris County Psychiatric Center; The Methodist Hospital; Shriners Hospitals for Children–Houston; Texas Children’s Hospital; and, Woman’s Hospital of Texas.

The UTHealth School of Dentistry has affiliations with institutions for dental student, dental hygiene student, and resident rotations and training. Hospital affiliations include: Ben Taub General, LBJ General, Memorial Hermann, The Methodist Hospital, Shriners Hospital, St. Luke’s Hospital, Texas Children’s Hospital, The Institute for Rehabilitation and Research, MD Anderson Cancer Center, and the Veterans Affairs Medical Center. Community clinics and organizations include: Bering-Omega Clinic, CHRISTUS Foundation HealthCare, City of Houston, Communities in Schools–Houston, ECHOS-Houston, Epiphany Charities, Harris County, Harris County Hospital District, HealthCare for the Homeless–Houston, Holly Hall Retirement Center, Houston ISD, Jasper-Newton County Health Services, Mission of Yahweh, Orange (TX) Christian Services, San Jose Clinic, and TOMAGWA HealthCare Ministries Clinic.

The University of Texas Harris County Psychiatric Center has affiliations or program agreements with the UTHealth School of Nursing; Alvin Community College (nursing); Chamberlain College
(nursing); College of the Mainland (nursing); DeBakey High School for Health Professions (preceptorship program); Galveston College (nursing); Grand Canyon University (nursing); Houston Baptist University (psychology and nursing); Houston Community College (Emergency Medical Technician (EMT) and nursing); Lee College (EMT and nursing); Prairie View A&M (nursing); San Jacinto College South (nursing); San Jacinto College North (nursing); San Jacinto College Central (Nursing); Stephen F. Austin State University (nursing and psychology); Texas Southern University (psychology, social work, and health information management); Texas Woman's University (nursing); University of Houston (nursing, psychology, and social work); University of Houston-Clear Lake (psychology and counseling/educational psychology); University of Houston Sugar Land (nursing); University of St. Thomas (nursing); UT Arlington (nursing); UT Austin (social work); UT El Paso (occupational therapy); and UT Medical Branch Galveston (nursing); and, Wayland Baptist University (nursing). Psychology residents from a variety of institutions are also trained.

UTHealth has academic affiliations with numerous universities in Latin America, Europe, and Asia that permit interested students to arrange, on an individual basis, periods of study or research abroad. We recognize that health and biomedical sciences are global in scope and encourage academic exchange with other countries and cultures.

Concurrent/Inter-Institutional Enrollment

UTHealth, along with, The University of Houston, Texas Woman's University, UT Rio Grande Valley, UT El Paso, UTMB Galveston, UTHSC at San Antonio, UT Austin, and UT Southwestern Medical Center have concurrent enrollment agreements that allow students enrolled in one institution to enroll for support courses in another institution. Additionally, UTHealth has inter-institutional agreements with Rice University, Baylor College of Medicine, Texas A&M HSC-IBT, and the Gulf Coast Consortia.

The mechanism for payment of tuition and fees vary according to the individual institution. Consult with the Registrar's Office for specific details at the following website: https://www.uth.edu/registrar/current-students/student-information/concurrentinter-institutional-enrollment.htm or call 713-500-3388.

STUDENT GENERAL INFORMATION

Student Government

UTHealth authorizes the existence of a student government body that has the jurisdictions and powers delegated to it by The University of Texas System Board of Regents. The official UTHealth student governance body is the Student InterCouncil (SIC), which is comprised of representatives from each of UTHealth’s six schools and includes representatives from traditionally underrepresented minority and international student constituencies.

The SIC contributes to the quality of student life at the university by participating in the development and implementation of policies and procedures affecting students, providing funds to support special projects of other student groups, representing student interests on external and internal committees, providing feedback to university administration on tuition and fee proposals, improving communication among the schools through the publication of an online student newsletter, Student Pulse, and planning and implementing activities that address the special needs of students.
Learn more about the Student InterCouncil at its website.

Website: https://www.uth.edu/sic

Student Organizations

UTH ealth encourages its students, faculty, and staff to develop collegial relationships, and has established specific policies that govern organizations formed by those affiliated with the university.

Pursuant to policy, membership in a UTHealth registered student organization is limited to only students, faculty, and staff of any one or more UTHealth schools or operating units. The organization may not suggest or imply that it is acting with the authority or as an agency of UTHealth or UT System.

Additionally, a registered organization may not use the name(s) of the university or its schools, or the name of The University of Texas System as part of the name of the organization. An organization cannot display the UTHealth logo or the seal of either the UTHealth or The University of Texas System in connection with any activity of the organization or use such marks as part of any letterhead, sign, banner, pamphlet, or other printed material bearing the name of the organization. The full UTHealth employee or student organizations policy can be found online in the Handbook or Operating Procedures (HOOP) Policy 110, Employee or Student Organizations (http://www.uth.edu/hoop/policy.htm?id=1448068)

Students should contact their respective school's Office of Student Affairs for application instructions for student organization registration and/or renewal. Instructions and online applications can be found at https://inside.uth.edu/academics/organizations.htm

Student Fee Advisory Committee

The Student Fee Advisory Committee is established pursuant to state law and is charged with reviewing proposed tuition, student services, incidental, laboratory and other fee changes, and making recommendations to the university Deans and/or President before submission of new fee proposals to UT System for approval by the Board of Regents. Each UTHealth school will convene a School Student Fee Advisory Committee that will review the proposed changes for that school.

Student Guide

The Office of Academic and Research Affairs provides an informational resource website for students and prospective students that describes UTHealth and community services, and provides an overview of student policies and accompanying procedures, and information about the Texas Medical Center area.

The Student Educational and Program Services website is at http://www.uth.edu/academics/applicants/index.htm. For more information, contact the Office of Academic and Research Affairs at (713) 500-3082.
UTHEALTH STUDENT SERVICES

Registrar

The UTH ealth Registrar’s Office provides a central computer-based student record system and web registration activities and other services for schools on this campus. The goals of the office are to provide an effective and efficient application process; to direct an accurate, facile registration process; and to maintain a computerized applicant, student and alumni record system.

Additional services provided by the Registrar’s Office include the issuance of transcripts, certification of student status, degree verification, Veteran’s Administration counseling and verification, residence determination and enrollment verification. The office, in conjunction with the Office of International Affairs, assists foreign students in maintaining their student status.

For further information, contact:

Office of the Registrar
The University of Texas Health Science Center at Houston
P.O. Box 20036
7000 Fannin, Suite 2250
Houston, Texas 77225
(713) 500-3388
email: registrar@uth.tmc.edu
Website: https://www.uth.edu/registrar/

Student Financial Services

UTHealth has available grants, scholarships, and loans based on the most current regulations or guidelines in effect at the time of award. Financial aid counselors are available Monday- Friday from 8:00 a.m. to 5:00 p.m. to provide counseling on financial assistance programs available to students. The Office of Student Financial Services is located on the 22nd floor of the University Center Tower, 7000 Fannin, Houston, Texas 77030.

Services and Financial Assistance Programs include:

• Financial aid eligibility and application procedures
• Costs of attendance
• Types of financial aid
• Loan repayment

Office of Student Financial Services
The University of Texas Health Science Center at Houston
P.O. Box 20036
7000 Fannin, Suite 2220
Houston, Texas 77225
(713) 500-3860
email: sfaregis@uth.tmc.edu
Website https://www.uth.edu/sfs/
Office of the Bursar

The Bursar’s Office (also known as the Cashier’s Office) is responsible for assessment and collection of tuition and fees, processing institutional deposits, remission of tuition, fees and sales tax to the State, financial reporting, issuing 1098T tax forms, reconciliation of various revenue accounts and providing quality customer service to students, faculty and staff. The primary purpose of this office is to assess and collect tuition and fees from students and third party sponsors, including providing and maintaining multiple installment payment plans, distributing financial aid, emergency loans and refunds. This office works closely with the Registrar and Student Financial Service offices to support the needs of the students.

The Bursar Office is also responsible for distributing special compliance notifications to students, such as set aside funds from designated tuition to be used for local institutional aid assistance programs and how the student can apply for those funds.

The office is located in the UTHealth University Center Tower (UCT) room 2240 at 7000 Fannin, Houston, Texas 77030. Office hours are Monday-Friday, 8:00 a.m. - 5:00 p.m. For questions regarding student accounts, tuition and fee payments, refunds, or installment plans students may call 713-500-3088.

Bursar Website: https://inside.uth.edu/finance/bursars/

Office of International Affairs

The Office of International Affairs (OIA) serves as the internal institutional resource to facilitate and oversee institutional compliance with state, local and federal laws and regulations regarding the immigration status of all non-U.S. citizens who participate in the academic, research, and clinical endeavors of The University of Texas Health Science Center at Houston.

Services and programs offered include:

- Advice on immigration issues to university units wishing to host or employ international visitors;
- Institutional compliance with immigration regulations assessment and training;
- Processing of immigrant and non-immigrant visa applications sponsored by the institution;
- Acting as a liaison among institutional departments, government agencies, and private organizations; and
- Coordinating educational and cultural programs and activities that promote the well-being of international visitors, students, trainees, faculty, and staff.

To ensure compliance with federal, state, and local regulations as well as institutional policies, all non-U.S. citizens must check-in with the Office of International Affairs prior to registering for classes in order to obtain the appropriate clearance to begin studies. All non-U.S. citizen students located at School of Public Health campuses outside Houston must check in with the Regional Coordinator located at each campus.

The Office of International Affairs is located in the University Center Tower, Suite 130 (first floor). Office hours are Monday - Friday, 8:00 a.m. to 5:00 p.m. (with the exception of Thursdays when the office is closed from 2:00 p.m. to 5:00 p.m.). Appointments are strongly encouraged to ensure that an International Visitor Advisor is available to assist in answering student questions or concerns.
For further information, and/or to make an appointment, contact:

Office of International Affairs
7000 Fannin St., Suite 130 (first floor)
Houston, Texas 77030

Mailing Address:
P.O. Box 20036
Houston, Texas 77225

(713) 500-3176 FAX (713) 500-3189
(713) 200-1825 (after hour emergency pager)
email: utoiahouston@uth.tmc.edu
Website: https://www.uth.edu/international-affairs/

Office of Equal Opportunity

The Equal Opportunity Office within Human Resources (HR-EO) provides resources, and advice to the university community. Key functions of this office that provide services to students include:

- Investigating complaints of discrimination and harassment based on race, color, religion, national origin, sex, age, sexual orientation, mental or physical disability, genetic information, veteran’s status, or any other basis prohibited by applicable law or university policy.
- Working with supervisors and 504 Coordinators to evaluate requests for reasonable academic accommodation under university policy and/or applicable law;
- Supporting the Title IX Coordinator in the development, implementation, and execution of programs and actions to support compliance with Title IX and other laws affecting these compliance efforts

For additional information, contact:
The University of Texas Health Science Center at Houston
Human Resources
7000 Fannin, Suite 150
Houston, Texas 77030
(713) 500-3079
Website: https://www.uth.edu/hr/department/equal-opportunity/index.htm

Student Health and Counseling Services

Student Health Services serves as the medical home for all UTHealth students and provides both medical and mental health services. A portion of the student services fee funds the programs.

Medical Services:

Medical health services are available for all UTHealth students and their dependents. Dependents services are billed directly to their health insurance. Services available include immunizations required for matriculation into and through UTHealth, tuberculosis screening, physical examinations, well woman examinations, flu shots, travel medicine, treatment of acute and chronic medical problems, and referrals to specialists as necessary. The clinic manages a 24-hour a day hotline for needlesticks and other exposures to hazardous body fluids. An on-
site Class D pharmacy offers many prescription medications for common illnesses and oral contraceptives. The clinic is staffed by physicians who are board certified, both in Internal Medicine and Pediatrics.

Low complexity office visits are covered by student fees. Higher complexity visits can be charged to the student’s insurance carrier. Immunizations may be covered by the student’s insurance and are otherwise offered at near cost. Testing following blood or body fluid exposure while performing educational assignments is covered by the Needlestick Program as long as student reports incident to our Occupational Exposure Hotline at 713-500-OUCH. Any charges not covered by the student’s insurance carrier are the responsibility of the student. These may include laboratory tests, radiological services, hospitalization and referred consultation, and pharmaceuticals.

Psychiatric and Counseling Services:

Balancing personal life with the demands of academia can be challenging. Psychiatric and counseling services are available for all UTHealth students at no additional cost. Available services include therapy sessions for a wide variety of concerns such as depression, anxiety, academic problems, alcohol/substance abuse, eating disorders, insomnia, relationship concerns, smoking cessation, suicidal thoughts, etc. Referrals are not required and students in need of these services are strongly encouraged to call and make an appointment.

Records are confidential, subject to federal and state law and university policy. Staff is available for outreach and prevention programs for all UTHealth Schools.

Student Health Services is located in the UT Professional Building, Suite 130 Office hours are 8:30 a.m. - 5:00 p.m. Appointments are preferred but not required for acute illness and emergencies.

For more information, contact:

UT Student Health Services
The University of Texas Professional Building
6410 Fannin, Suite 130
Houston, Texas 77030
(713) 500-5171 FAX (713) 500-0605
Website: https://www.uth.edu/studenthealth

Student Health Insurance

The University of Texas System Board of Regents mandates health insurance for students enrolled in the UT System health components. The Board of Regents has authorized the assessment of a health insurance fee for each semester to each student who cannot provide evidence of continuing coverage under another approved plan.

In addition, the Board of Regents requires all international students holding any non-immigrant visa have coverage that complies with the provisions of the Patient Protection and Affordable Care Act (PPACA). Enrollment in the student health insurance plan (SHIP) is automatic at the time of registration. Students interested in waiving the SHIP can submit policy information online at https://uthouston.myahpcare.com during the open enrollment period.

Student health insurance is offered to registered students through a private company selected
The University of Texas Graduate School of Biomedical Sciences at Houston

by The University of Texas System. This plan is designed to supplement student health services. In addition, it also assists with expenses not covered by the student services fee such as prescriptions, hospitalization, etc. Students have the option of enrolling their families in this plan at additional cost.

For further information, contact: Auxiliary Enterprises

The University of Texas Health Science Center at Houston
7779 Knight Road
Houston, Texas 77054
(713) 500-8400 FAX (713) 500-8409
email: student-insurance@uth.tmc.edu
Website: https://www.uth.edu/auxiliary-enterprises/insurance

Child Development Center

UTHealth operates a Child Development Center (CDC) for children ages six weeks through kindergarten, located within the University Housing complex at 7900 Cambridge. The Center offers a safe, enriching and explorative environment where children enjoy learning and playing. The educational environment for infants is designed to provide visual and auditory stimulation in a warm, wholesome and nurturing setting. The program for toddlers and older children features open learning centers that provide for individual instructional activities with large and small group interaction. All children are encouraged to develop according to their own unique abilities, interests and growth rates.

In addition to being licensed by the State of Texas, the CDC is nationally accredited by the Southern Association of Colleges and Schools (SACS). The CDC program was the first nationally accredited center in the Texas Medical Center. The CDC offers a structured, full day kindergarten program with before- and after-school care available, and also participates in the Texas School Ready Program through the UTHealth Children’s Learning Institute. The CDC is open from 6:00 a.m. to 6:00 p.m., Monday through Friday, and is closed on all UTHCA holidays.

Parents are encouraged to participate in various projects involving their children and in the activities of the Building Blocks Committee, which acts as a support group for the CDC. Regularly scheduled parent/teacher conferences apprise parents of their child’s growth and development. Enrichment classes (e.g., music, dance, soccer, gymnastics) are available during the school year, while swimming is offered during the summer months. These extra enrichment classes are optional and available at additional cost.

Tours are available by appointment on Tuesday, Wednesday and Thursday from 9:00 a.m. until 4:00 p.m.

Child Development Center
The University of Texas Health Science Center at Houston
7900 Cambridge
Houston, Texas 77054
(713) 500-8454
Website: https://www.uth.edu/child-development-center
University Housing

University Housing consists of three unique apartment communities. Each apartment is carpeted and equipped with an all-electric kitchen. The Phase I complex was built in 1982 and features first and second floor units in one-, two-, and three-bedroom floor plans. Phase I offers coin-operated washers and dryers housed in three laundry rooms.

The Phase II property, built in 2005, is a contemporary style living environment with four stories of one and two bedroom apartments and a four-story parking garage located in the middle of the complex. Each unit in Phase II has its own washer and dryer.

Phase III, opened in May 2014, was built in the same style and offers the same amenities of the Phase II property as well as granite countertops in the bathrooms and kitchen with wood flooring in the kitchen, living and bathroom areas. The entrance to all three properties is monitored by a 24-hour guard. Residents enjoy the amenities of a commons room, swimming pool and close proximity to the Child Development Center, the UT Recreation Center and the UTHealth shuttle.

Leasing office hours are from 8:30 a.m. to 5:30 p.m. Monday through Friday.

Affiliated students, faculty, and staff are encouraged to apply for a place on the waiting list for available vacancies.

For further information contact:

University Housing
The Leasing Office
1885 El Paseo
Houston, Texas 77054
(713) 500-8444 FAX 500-8448

Website https://www.uth.edu/housing/

Transportation

UTHealth provides a circulator shuttle for all UTHealth students, faculty and staff. UTHealth identification badges are required for access onto the shuttle. The shuttle service is contracted through Groome Transportation and operates from 6:00 a.m. to 8:30 p.m. Monday through Friday, excluding official university holidays. During peak operating hours (6:00 a.m. to 9:00 a.m. and 3:00 p.m. to 6:00 p.m.), the shuttle runs every 10-15 minutes. Shuttle stops are located at: University Housing, Recreation Center, University Center Tower, School of Nursing, Graduate School of Biomedical Sciences, McGovern Medical School, School of Public Health, School of Dentistry and the Research Park Complex. The real-time location of each shuttle can be tracked online at http://uthpublic.etaspot.net/ or by downloading app DoubleMap and search for UTHealth (for mobile devices). For information regarding shuttle services or routes, please contact Auxiliary Enterprises at shuttle@uth.tmc.edu or visit the website at https://www.uth.edu/shuttle.

In addition to the UTHealth Shuttle, the Texas Medical Center (TMC) operates a free shuttle. For information about TMC shuttle service, see http://www.tmc.edu/contact/parking/ or call the TMC Parking Office at (713) 791-6161.
General Parking Information for UTHealth Students

Students may obtain contract parking from UTHealth or the Texas Medical Center (TMC). For UTHealth student parking information, call 713/500-3405 or visit https://www.uth.edu/parking/ (under the Parking tab, click on Student Parking Policy). For TMC information, call 713/791-6161 or visit http://www.tmc.edu/contact/contract-parking/. Reduced rate parking is available at these remote lots: UT South Campus Lot, TMC South Extension Lot, TMC Smith Lands and TMC South Main Lot. Some remote parking lots offer free shuttle service to the main campus and/or “after hours” privileges to park in the main campus garages.

Vehicles parking or driving on property controlled by UTHealth are subject to enforcement of state vehicle inspection laws.

UTHealth On-Campus Parking:

University Center Tower (UCT) Garage (7000 Fannin at Pressler): Full-access contract parking at the UCT garage is available only to employees and students in the UCT and Institute of Molecular Medicine (IMM) buildings. However, after-hours parking contracts are available to all students (see below). In addition, all currently enrolled students who visit UCT for student-related business (i.e., Registrar, financial aid, and Bursar’s office) are granted complimentary parking validation for one and a half hours upon presenting a valid current student ID badge and parking ticket to the Parking Office on the first floor of UCT (parking in excess of 1-1/2 hours is at the student’s expense).

University Professional Building (UPB) Garage (6414 Fannin): Full-access contracts are not available to students at the UPB Garage. However, after-hours contracts are available (see below). The Prairie View A&M University (PVAMU) Garage at 6436 Fannin (next to UPB Garage) offers 24/7 month-to-month parking contracts to UTHealth students on a first-come, first-serve basis. Students may purchase a parking contract for the PVAMU Garage by presenting a valid student ID at the UPB Parking Office.

UT South Campus Lot: The UT South Campus Lot, located across from the UT Recreation Center, is available to all students 24/7 at a rate of $40 per month. The UTHealth Shuttle picks up directly in front of the South Campus Lot and stops at key points around campus. The South Campus Lot is also within walking distance to the UTHealth School of Dentistry (SOD). South Campus contracts include after-hour access to the Research Park Complex (RPC) Lot located directly in front of SOD.

Research Park Complex (RPC) Lot: The RPC Lot, located across from the UTHealth School of Dentistry, is not available for full access student contract parking. However, after-hours and weekend access to the RPC Lot is included with the purchase of contract parking at the UT South Campus Lot.

SON/SPH Lots: The SON/SPH lots adjacent to the UTHealth School of Nursing and the UTHealth School of Public Health are not available for full access student contract parking. However, after-hours contracts are available (see below).

After-Hours Parking Contracts are available for UCT Garage, UPB Garage and SON/SPH lots. These contracts allow parking at the designated facility lots Monday through Friday from 5:00 pm to 8:00 am, or any time on weekends. The cost for an after-hours parking contract is $30 per six-month period (January-June and July-December) plus a one-time non-refundable parking card activation fee of $10. (After-hours parking at the RPC Lot is included with the purchase of a
full-access contract at UT South Campus.)

For further information contact:

UTHealth Parking Services UCT
7000 Fannin (UCT)
Houston, Texas 77030
(713) 500-3405
email: Parking@uth.tmc.edu
Website: https://www.uth.edu/parking

UTHealth Parking Services UPB
6414 Fannin (UPB)
Houston, TX 77030
(832) 325-7655

Alternative Transportation Options

Van Pool Info: METRO Star offers a monthly subsidy per van pool riders who ride at least twelve times per month round trip. The subsidy is provided direct to the vanpool driver’s account and the savings passed on to the rider. To form or join a vanpool, please register on METRO’s online website at www.ridemetro.org or call METRO at (713) 224-RIDE (7433).

METRO: METRO officers a 50% discount off the full fare for all local Park and Ride or METRORail rides. Student must obtain a letter showing you are a registered student of the university. The letter can be obtained by presenting a current UTHealth ID Badge at one of the UTHealth Parking Offices: UCT-7000 Fannin or 6414 Fannin. The letter and student ID must be presented to the METRO Ridestore, 1900 Main Street, 1st floor, to obtain a picture ID METRO QCard. METRO is open Monday through Friday, 8:00 a.m. to 5:00 p.m., and can be reached by riding the METRO Rail Line to Downtown Transit Center stop. Contract METRO at (713) 739-6968 for more information.

For additional information please contact UTHealth Parking/ Shuttle Services at email: Parking@uth.tmc.edu
Website: https://www.uth.edu/parking

Bookstores

Follett Higher Education Group operates three UTHealth campus bookstores at McGovern Medical School, the School of Dentistry and the School of Nursing.

A student of this institution is not under any obligation to purchase a text-book from a university-affiliated bookstore. The same textbook may also be available from an independent retailer, including an online retailer.

Each campus store carries required and recommended textbooks, professional references, review books and study guides. The UTHealth campus store offer special ordering of books, book rentals (select titles) and a Price Match Program on required textbooks. Please contact your campus store for details on the Price Match Program.

Students will find a wide selection of medical supplies, diagnostic equipment, and a large variety of scrubs and lab coats in stock at the UTHealth campus stores. UTHealth gift items, emblazoned apparel and discounted Microsoft Office™ suites (PC and MAC) are also available. Diploma frames are available year-round, including the option to place custom orders online at https://www.framingsuccess.com using the site’s Frame Creator feature.

UTHealth campus stores also partner with Club Colors to fill special order items for groups or
individuals. You may visit Club Colors’ website at www.clubcolors.com to view their selection of
gifts, apparel and customizable options. Please contact your campus store for details regarding
special orders through Club Colors.

For further information, contact:

UTHealth McGovern Medical School Campus Store #1393
The University of Texas Health Science Center at Houston
6431 Fannin, Suite B600
Houston, TX 77030
(713) 500-5860 FAX (713) 500-0540
Website: www.utmedicalshop.com
Hours of operation: 8:30 am to 5:00 pm Monday to Friday

UTHealth School of Dentistry Campus Store #1394
The University of Texas Health Science Center at Houston
7500 Cambridge
Houston, Texas 77054
(713) 486-4450
Website: www.utdentalshop.com
Hours of operation: 8:00 am to 4:30 pm Monday to Friday

UTHealth School of Nursing Campus Store #1392
The University of Texas Health Science Center at Houston
6901 Bertner, Room 280
Houston Texas 77030
(713) 500-9561 FAX (713) 500-0982
Website: www.utnursingshop.com
Hours of operation: 8:30 am to 5:00 pm Monday to Thursday, 8:30 am to 4:00 pm Friday

University Dining and Catering Services

Food Service locations are provided at the School of Nursing, School of Dentistry and McGovern
Medical School buildings. Catering is available through the School of Nursing location. Vending
machines are also located throughout the UTHealth campus.

Phone: 713-500-8405
Catering: 713-500-9103
Website: www.uthouston.edu/dining-catering

School of Nursing The cafeteria is located on the first floor of the School of Nursing Building
at 6901 Bertner Avenue. A variety of dining choices are available for your convenience. Call for
catering needs throughout the university. Phone: 713-500-9103

School of Dentistry The grab-n-go is located on the ground floor of the School of Dentistry
at 7500 Cambridge. A limited variety of dining choices are available along with a selection of
specialty coffee drinks.

McGovern Medical School The grab-n-go is located on the ground floor of the McGovern
Medical School Building at 6431 Fannin. A limited variety of dining choices are available along
with a selection of specialty coffee drinks.
Hours of Operation (excluding university holidays): Monday - Friday 7:00 a.m. – 3:00 p.m.

Recreation Center Facilities and Programs

The UT Recreation Center, adjacent to University Housing offers high quality recreational and athletic facilities featuring a variety of programs and equipment designed for health, fitness, fun and relaxation.

Programs consist of personal training, motivational and incentive programs, group fitness classes, American Heart Association CPR/AED and First Aid Certifications, team and individual recreational sports and seasonal swim lessons all centered upon the facilities:

- Heated outdoor Olympic size pool
- Strength training equipment
- Cardiovascular equipment w/individual TVs, personalized tracking programs and Wi-Fi
- Leisure games – Table Tennis and Billiards
- Racquetball Court
- Outdoor basketball courts
- Tennis courts
- Sand Volleyball courts
- Athletic fields – softball, football, soccer and recreational activities (seasonal)
- Outdoor Jogging/Walking Trail and fitness stations

Membership is open to all Texas Medical Center faculty, staff, residents and students, UT System Alumni and families. For current UTHealth students, membership is included in the student service fees. A valid TMC institutional ID or proof of alumni status is required at time of purchase and renewal of any services offered. Memberships are offered on a monthly, quarterly or yearly basis for individuals or families. Family memberships extend to the eligible member’s spouse and all dependents up to the age of 20 (children under 16 must be accompanied and supervised by a parent or guardian at all times while using the facilities). Summer Family Packages are available for pool use.

The facility is open seven days a week, closing only for major university holidays. For minor holidays, hours may be reduced, but will be announced in advance. Hours are Monday through Friday, 5:30 am to 10:00 pm, Saturday 8:00 am to 8:00 pm, and Sunday 10:00 am to 8:00 pm. The pool closes 30 minutes prior to the facility’s closing time.

For further information, please contact:
UTHealth Recreation Center
7779 Knight Road
Houston, Texas 77054
(713) 500-8420
Website: https://www.uth.edu/recreation-center/
MD ANDERSON STUDENT SERVICES

Students in the UT Graduate School of Biomedical Sciences have access to student services at both UTHealth and MD Anderson. The office of the Vice President for Academic Affairs at MD Anderson provides oversight, coordination and management for student services at MD Anderson.

For more information, contact:

Office of Academic Affairs
The University of Texas MD Anderson Cancer Center
1515 Holcombe Blvd., Unit 147
Houston, TX 77030-4009
(713) 792-0873 FAX (713) 792-2169

Registrar

All graduate students in The University of Texas Graduate School of Biomedical Sciences at Houston are provided student record system and registration activities and other services by the UTHealth Registrar’s Office.

Student Financial Services

All graduate students in The University of Texas Graduate School of Biomedical Sciences at Houston are provided financial aid specialists and counseling on financial assistance programs by the UTHealth Office of Student Financial Services.

Office of International Affairs

The UTHealth Office of International Affairs serves the needs of non-U.S. citizens, faculty, students, fellows and staff at the UTHealth. Students with visas who rotate to MD Anderson must check-in at the MD Anderson Visa Office.

Office of the Chief Diversity Officer

MD Anderson is committed to enhancing diversity. The Chief Diversity Officer reports to the Vice President for Human Resources and has the responsibility for ensuring that MD Anderson promotes diversity as a way of life and meets its obligations as an Affirmative Action and Equal Employment Opportunity employer and educational institution.

Emergency Health Services

MD Anderson provides emergency health services for on-site student injuries.

Employee Assistance Program

The Employee Assistance Program (EAP) managed by MD Anderson Human Resources provides confidential assistance to educational appointees and immediate family members to resolve problems that affect their personal lives and performance and for personal legal matters. EAP offers professional assessment, guidance and referral services.
Employee Wellness and Programs Departments

These departments, managed by Human Resources, provide fitness programs, weight and wellness programs, individual coaching/counseling, and seasonal social events and sports programming for all employees including educational appointees.

Scientific Publications

The MD Anderson Office of Scientific Publications serves as a resource for all MD Anderson-based students and provides assistance to students in writing and editing scientific articles and grants with a faculty author at MD Anderson.

Website: https://www.mdanderson.org/research/research-resources/scientific-publications.html

Faculty Development

Dedicated to enhancing the professional development and career satisfaction of faculty and trainees, Faculty Development offers a variety of programming, online learning resources and personal assistance tailored to their unique needs. Students’ career development needs are considered in the design of many of these programs and resources, and all students are encouraged to attend the open events advertised.

Website: https://www.mdanderson.org/education-training/education-resources/faculty-academic-development.html

Academic and VISA Administration-Trainee

Academic and VISA Administration-Trainee provides leadership, guidance and support to MD Anderson departments, programs, trainees, students, alumni and external regulatory agencies, thereby promoting positive educational experiences throughout the institution.

Website: https://www.mdanderson.org/education-training/education-resources/academic-visa-administration-trainee.html

Other UTHealth-Provided Student Services

Student Health Services, Student Health Insurance, UT Counseling and Worklife Services, Child Development Center, University Housing, Transportation and Parking, Bookstore, Dining and Catering Services, Recreation Center Facilities and Programs, and the Texas Medical Center Library are also available to all students in the Graduate School of Biomedical Sciences regardless of whether their supervisory professor has a shared faculty appointment at UTHealth or MD Anderson.
UTHEALTH AND MD ANDERSON POLICY
INFORMATION FOR GSBS STUDENTS

Policy Information for Students

All students are admitted into The University of Texas Graduate School of Biomedical Sciences at Houston (GSBS), rather than into departments at UTHealth or MD Anderson Cancer Center. During their first and subsequent years of study, students take classes in the GSBS taught by faculty who hold both an appointment in the GSBS and also hold a faculty appointment in either UTHealth or MD Anderson. Also in their first year, students take three tutorial rotations selected from among all GSBS faculty.

As both MD Anderson and UTHealth are State of Texas agencies and sister academic institutions in The University of Texas System, the academic policies governing students and faculty are fundamentally similar. GSBS faculty and both institutions’ administrations have agreed that students in the GSBS will be governed in academic matters by the policies in the UTHealth Handbook of Operating Procedures and The University of Texas Board of Regents’ Rules and Regulations.

GSBS students who hold a Graduate Research Assistantship must follow the employment policies of the academic institution in which they have their appointment. When students rotate at MD Anderson or select a faculty supervisor who holds an appointment at MD Anderson there are some all-employee policies at MD Anderson, for example the immunization policy, that may differ from those of UTHealth and that do apply to GSBS students at MD Anderson.

The following excerpts and policy descriptions from the UTHealth Handbook of Operating Procedures (HOOP) relate to student life. Additional student policies can be found in the HOOP located at https://www.uth.edu/hoop/.

University policies, promulgated under the authority of The University of Texas System Board of Regents’ Rules and Regulations (https://www.utsystem.edu/board-of-regents/rules) implement governance and administrative procedures for UTHealth within those guidelines.

STUDENTS (INCLUDING RESIDENTS AND FELLOWS) ARE CHARGED WITH THE RESPONSIBILITY FOR KNOWLEDGE OF AND COMPLIANCE WITH ALL UTHEALTH POLICIES, REGULATIONS AND PROCEDURES, INCLUDING, AS APPROPRIATE, POLICIES, REGULATIONS, AND PROCEDURES UNIQUE TO THE INDIVIDUAL SCHOOL OR PROGRAM IN WHICH THE STUDENT IS ENROLLED OR PARTICIPATES.

For additional information on policies specific to individual schools, contact the Student Affairs Office in your school or access the individual school’s website from links provided on the UTHealth home page at https://www.uth.edu/.

Educational Records and Family Educational Rights and Privacy Act (FERPA)

UTHealth complies with the Family Educational Rights and Privacy Act of 1974 (FERPA), which protects the privacy of educational records and establishes the rights of students to access of their educational records. The Registrar will annually notify students of their rights and the procedures for exercising these rights.

The full policy can be found in HOOP Policy 129, Educational Records at https://www.uth.edu/
Student Complaints

UTHealth encourages fair, efficient and equitable solutions for problems or disputes arising out of the educational process in accordance with applicable university or school policies and procedures. This policy applies to formal academic and non-academic complaints and is applicable to all students, including those enrolled in online and/or distance education courses or programs. The policy informs students of procedures in regard to the following complaints:

- Complaints regarding the general or academic misconduct of another student;
- Complaints regarding discrimination and/or harassment, including sexual misconduct;
- Complaints regarding student educational records;
- Complaints regarding grades or grading;
- Complaints regarding other issues related to central student services; and
- Complaints regarding other issues related to individual schools.

The university policy can be found in HOOP Policy 220, Student Complaints, at https://www.uth.edu/hoop/policy.htm?id=2553c1c1-c490-4ad0-a570-e263e12e0dff

Emergency Communications

UTHealth is committed to protecting its personnel, property, and the surrounding community from the effects of spontaneous and predicted emergency situations by maintaining procedures to assist students, employees and visitors in responding to emergencies.

The various means of UTHealth Emergency Communications along with the current campus status can be found at https://www.uthealthemergency.org/. The website is designed to provide the UTHealth community with the most current information regarding potentially hazardous weather or other emergency conditions along with building, school, and information systems status.

UTHealth ALERT is the instant text message emergency notification system that provides the campus community information about imminent threat, crisis or harm, or university status updates if weather conditions dictate a “restricted access” situation. Students can verify their enrollment in the UTHealth ALERT system by following instructions in myUTH to add or update a personal cell phone number.

For more information regarding UTHealth emergency procedures, please refer to HOOP Policy 85, University Official Closure Status for Emergency, Disaster or Severe Weather at https://www.uth.edu/hoop/policy.htm?id=1448018.
Campus Security

UTHealth is committed to a safe and secure learning and working environment. To that end, the university strives to assure that its buildings and contents are secure and that members of the university community are properly identified and are given appropriate access to university facilities and amenities. Campus security policies can be found online in HOOP Policy 2, Campus Security (https://www.uth.edu/hoop/policy.htm?id=1447852).

Possession of firearms on university premises is strictly regulated.

- Long guns (e.g., rifles and shotguns) are prohibited in university buildings at all times except if carried by police officers.
- Texas law forbids the open carrying of handguns on university premises at all times except by police officers.
- Holders of a Texas License to Carry a Handgun may only carry concealed handguns on or about their person in limited areas as specified in Hoop Policy 222 Concealed Handguns on Campus at https://www.uth.edu/hoop/policy.htm?id=aeb4da95-c86f-4e39-af0b-f7b6e4d220f2

In compliance with the Student Right-to-Know and Crime Awareness and Campus Security Act, UTHealth collects specified information on campus crime statistics and makes timely reports to the university community on crimes considered to be a threat to students and employees. The University of Texas at Houston Police Department provides a link to crime statistics on its website at http://www.mdanderson.org/utpd/.

Guidance on reporting criminal activity on campus can be found online in HOOP Policy 87, Reporting Criminal Activity on Campus at https://www.uth.edu/hoop/policy.htm?id=1448022.

Making a False Alarm or Report

A person commits a felony offense under Texas law if he or she knowingly initiates, communicates or circulates a report of a present, past, or future bombing, fire, offense, or other emergency that he or she knows is false or baseless and that would ordinarily: (1) cause action by an official or volunteer agency organized to deal with emergencies; (2) place a person in fear of imminent serious bodily injury; or (3) prevent or interrupt the occupation of a building, room, place of assembly, place to which the public has access, or aircraft, automobile, or other mode of conveyance. The offense of making such a false alarm or report involving a public or private institution of higher education is a state jail felony. An individual adjudged guilty of a state jail felony shall be punished by confinement in a state jail for any term of not more than two years or less than 180 days and, in addition to confinement, an individual adjudged guilty of a state jail felony may be punished by a fine not to exceed $10,000.

Conduct and Discipline

All UTHealth students are expected and required to obey federal, state, and local laws, university policy, and to comply with the directives issued by UTHealth or UT System administrative officials acting in the course of their authorized duties, and to obey standards of conduct appropriate for an academic institution. Any student who engages in conduct that violates UTHealth or UT System policies or rules, or federal, state, or local laws is subject to discipline whether the conduct takes place on or off campus and whether or criminal penalties are imposed for such conduct.
The full student conduct and discipline policy can be found online in HOOP Policy 186, Student Conduct and Discipline (https://www.uth.edu/hoop/policy.htm?id=1448220).

Copyrighted Material and Software

All UTHealth employees and students must comply with United States Copyright Law of 1976, as amended, (Title 17, United States Code) (“Copyright Act”) including UTHealth policies and guidelines governing the use of copyrighted materials. All students are responsible for knowing the laws that govern copyrighted materials which are summarized in HOOP Policy 47, Classroom and Research Use of Copyrighted Material (https://www.uth.edu/hoop/policy.htm?id=1447942).

Both uploading and downloading files can potentially violate copyright laws. Students should be cautious and research whether the source provides material licensed by a copyright owner. Links for information regarding Peer-to-Peer file sharing and potential copyright infringement can be found on the UTHealth Information Technology website under the heading of Cyber-Security Tips (US-CERT) at https://www.uth.edu/it/index.htm, under the heading of Cyber-Security Tips (US-CERT).

UTHealth must also comply with copyright laws pertaining to computer software and with software license agreements. Students and employees Any use of university computers and/or computer peripherals by students or employees for unauthorized duplication of copyrighted or licensed works is subject to appropriate disciplinary action as well as those civil remedies and criminal penalties provided by federal and state laws. Detailed information on Software Copyright Compliance can be found in HOOP Policy 198 (https://www.uth.edu/hoop/policy.htm?id=1699026).

Criminal Background Checks - Students

UTHealth is committed to providing a safe environment for its students and employees. The university obtains criminal background information regarding applicants for security sensitive positions. The university has determined that all positions (whether employee or student) within the university are security sensitive. Individuals who are unable to meet the university’s criminal background standards may be denied admission or continued enrollment in the program.

Enrolled students may be required to consent to additional criminal background checks for clinical placement or other purposes at the discretion of the Dean of each school.

The full policy can be found online in HOOP Policy 160, Criminal Background Checks (https://www.uth.edu/hoop/policy.htm?id=1448168).

Disability Accommodation

UTHealth is committed to providing equal opportunities for qualified employees, job applicants, and students with disabilities.

Student applicants and enrolled students can obtain information concerning program-related accommodations in each school from the school’s Section 504 Coordinator (usually found in the Student Affairs office of each school). The Disability Coordinator (in Human Resources) and the Section 504 Coordinators can provide information and referrals regarding campus accessibility, disabled parking permits, transportation services, and other resources.
Hazing

Hazing is prohibited by both state law and university policy. Individuals or organizations engaging in hazing could be subject to fines and charged with criminal offenses. Additionally, the law does not affect or in any way restrict the right of the University to enforce its own rules against hazing.

The term “hazing” is broadly defined by statute to mean any intentional, knowing, or reckless act, occurring on or off UTHealth property, by one person alone or acting with others, which endangers the mental or physical health or safety of a student for the purpose of pledging, being initiated into, affiliating with, holding office in, or maintaining membership in any organization whose members are or include students at the university. Hazing with or without the consent of the student is prohibited and violations may render both the person inflicting the hazing and the person submitting to the hazing subject to criminal prosecution and disciplinary action by UTHealth.

AIDS, HIV, HBV, AND HCV Infection

UTHealth works to help safeguard the health and safety of students, employees, patients, and the general public against the contact and spread of infectious diseases. UTHealth is also sensitive to the needs and rights of any of its employees or students who have contracted diseases that might be infectious. In recognition of the Human Immunodeficiency Virus (HIV), Hepatitis B Virus (HBV), and Hepatitis C Virus (HCV) as serious public health threats, UTHealth has adopted policy and procedural steps to both prevent the spread of HIV, HBV, and HCV infections and to protect the rights and well-being of employees and students. The university’s policy, which defines terms and addresses general principles, voluntary counseling and testing, work-related exposure, and educational efforts, can be found in Hoop Policy 158, Bloodborne Pathogen Infection Control (https://www.uth.edu/hoop/policy.htm?id=1448164).

Student Immunizations and Health Records

All students registering at UTHealth are required to furnish an immunization record signed by a health care provider. An immunization hold is automatically placed on an applicant’s record at the time of an applicant’s acceptance to UTHealth. The UT Student Health Clinic will release all immunization holds after proof of immunizations is provided.

The following immunizations and screening tests are required for all students admitted to UTHealth:

- Tuberculin Skin Test or Quantiferon/T-Spot blood test must be done within the past 6 months, even for those who have received BCG vaccine as a child. If PPD or Quantiferon/T-Spot blood test is positive, a chest x-ray documenting no active tuberculosis must be submitted with immunization form;
- Measles – proof of two doses of measles vaccine administered on or after the first birthday and at least 30 days apart or a positive rubeola titer confirming immunity or evidence of prior infection;
- Mumps – proof of one does of mumps vaccine administered on or after the first birthday or a
positive mumps titer confirming immunity or evidence of prior infection;

- Rubella – proof of one does administered on or after the first birthday or a positive rubella titer confirming immunity or evidence of prior infection;

- Tetanus/Diptheria and Pertussis – proof of one “booster” dose within the past 10 years; Td/DPT/Dtap does not satisfy this requirement;

- Hepatitis B virus (HBV) – proof of serologic immunity to HBV or certification of immunization with a complete series of hepatitis B vaccine. Students must be vaccinated to most current status possible prior to registering for classes;

- Varicella (chickenpox) – proof of two dose vaccine series or lab report of positive varicella titer. If varicella titer is negative, varicella vaccine series is required; and,

- Meningococcal (Meningitis) – Documentation of one dose of meningitis vaccine if younger than 22 prior to the beginning of classes. The vaccine must be administered within 5 years and at least 10 days prior to enrollment. (Students 22 and older are NOT required to have meningitis immunization).

Important information regarding the Meningococcal Vaccine

Texas law mandates that Texas universities and health science centers require all new and transfer students show proof of vaccination against bacterial meningitis. The law does not apply to new and transfer students who are over the age of 22 and older at the time of enrollment or who are enrolled only in distance learning classes.

The only exceptions permitted by law are for:

1. Students who can provide proof that a health care provider has determined that it would be a health risk for the student to have the vaccine; or,

2. Students who use the Exemption Form issued by the Texas Department of State Health.

Obtaining the required form from the Texas Department of Health Services to establish an exemption for reasons of conscience is a time-intensive process that takes approximately a month. A student anticipating using this exemption should start this process early. An online exemption request form can be found on the Texas Department of State Health Services website at http://www.dshs.state.tx.us/immunize/school/default.shtm#exclusions.

For more information on immunizations or how to obtain certain required immunization exemptions, contact the UT Student Health Clinic at (713) 500-5171 or visit its website at https://www.uth.edu/studenthealth/.

The university policy, listing required immunizations and procedures for requesting exemptions from required immunizations, can be found in HOOP Policy 55, Student Immunizations and Health Records (https://www.uth.edu/hoop/policy.htm?id=1447958).

Determination of Resident Status

Before an individual may register at UTHealth and pay Texas resident rate tuition, the individual must provide required information regarding their residency status. The Registrar is the Residency Determination Official for the university. The university policy regarding residency can be found online in HOOP Policy 58, Determination of Resident and Non-Resident Tuition Status (https://www.uth.edu/hoop/policy.htm?id=1447964).
Information about the Petition for Resident Tuition and a link to the Core Residency Questionnaire can be found on the Registrar’s Website (https://www.uth.edu/registrar/current-students/student-information/policy-for-texas-resident-tuition.htm).

Absences

Observance of a Religious Holy Day: Students who wish to observe a religious holy day that interferes with classes, examinations or completion of assignments, must inform the instructor of each class to be missed and/or of the planned absence(s) not later than the fifteenth day of the semester. The notification must be in writing and may either be delivered by the student personally to each instructor, with receipt of the notification acknowledged and dated by each instructor, or mailed by certified mail, return receipt requested, to each instructor. Pursuant to Texas law, a request to observe a religious holy day may be denied if the student’s absence will interfere with assigned clinical care.

A student who follows these procedures and is excused from class for a religious holy day may not be penalized, but the instructor may respond appropriately if the student fails to satisfactorily complete a missed assignment or examination within a reasonable time after the absence. The university policy can be found in HOOP Policy 112, Observing Religious Holy Days (https://www.uth.edu/hoop/policy.htm?id=1448072).

Military Obligations: For any academic term that begins after the date a student is released from active military service but not later than the first anniversary of that date, a school shall readmit the student, without requiring reapplication or charging a fee for readmission, if the student is otherwise eligible to register for classes. On readmission of the student under these circumstances, the School shall provide to the student any financial assistance previously provided by the institution to the student before the student’s withdrawal if the student meets current eligibility requirements for the assistance, other than any requirement directly affected by the student’s service, such as continuous enrollment or another similar timing requirement; and allow the student the same academic status that the student had before the student’s withdrawal, including any course credit awarded to the student by the institution. The university may require reasonable proof from a student of the fact and duration of the student’s active military service.

If a student enrolled in a school fails to attend classes or engage in other required activities because the student is called to active military service that is of a reasonably brief duration and the student chooses not to withdraw from school, the school shall excuse a student from attending classes or engaging in other required activities, including examinations, in order for the student to participate in active military service to which the student is called, including travel associated with the service. A student whose absence is excused under this provision may not be penalized for that absence and shall be allowed to complete an assignment or take an examination from which the student is excused within a reasonable time after the absence. An instructor may appropriately respond if the student fails to satisfactorily complete the assignment or examination with a reasonable time after the absence.

Military Service Withdrawal: A student who withdraws as a result of being called to active military service may choose: (1) to receive a refund of tuition and fees for the semester; (2) if eligible, to be assigned an “incomplete” (“I”) in each course; or (3) at the instructor’s discretion, to receive a final grade in the courses where the student has completed a substantial amount of course work and has demonstrated sufficient mastery of the course material.
Sexual Misconduct

Title IX of the Education Amendments of 1972 prohibits discrimination based on sex in educational programs or activities. UTHealth is committed to providing an environment free from discrimination and inappropriate conduct, which includes all forms of sexual misconduct, including sexual harassment, sexual assault, sexual violence, stalking, domestic violence and/or dating violence. Sexual misconduct will not be tolerated, and individuals who engage in such conduct shall subject to disciplinary action.

In accordance with this commitment, UTHealth has developed policies to ensure that all members of the university community receive education and understand UTHealth’s policies and procedures. The university’s policy on sexual misconduct, contact information for UTHealth’s Title IX Coordinator, additional resources, and procedures for reporting a complaint of sexual misconduct can be found online in HOOP Policy 59, Sexual Misconduct (https://www.uth.edu/hoop/policy.htm?id=1447966).

Nondiscrimination, Anti-Harassment and Equal Opportunity

UTHealth has established procedures for dealing with allegations of discrimination and/or harassment on the basis of race, color, religion, sex, sexual orientation, national origin, age, disability, genetic information, gender identity or expression or veteran status. Any student who believes that he or she has been discriminated against should use the appropriate process outlined in Hoop Policy 183. This policy applies to the conduct of all members of the UTHealth community, including, but not limited to administrators, faculty, staff, students, residents, fellows and other trainees, volunteers, vendors, consultants, observers and visitors. The university’s policy, can be found online in HOOP Policy 183, Nondiscrimination, Anti-Harassment and Equal Opportunity (https://www.uth.edu/hoop/policy.htm?id=1448214).

Substance Abuse – Students

UTHealth is committed to maintaining an environment that is free from substance abuse. The university expects impaired students to seek help voluntarily and to assume responsibility for their professional and personal conduct. UTHealth recognizes that substance abuse is a treatable condition and, as an institution dedicated to health, facilitates the treatment and rehabilitation of this condition. Such assistance may be provided through Student Health and Counseling Services, the Medical School Department of Psychiatry and Behavioral Sciences, private physicians or community agencies with expertise in treating chemical dependence.

The university’s policy on Substance Abuse can be found online in HOOP Policy 173 (https://www.uth.edu/hoop/policy.htm?id=1448194).

Student Travel

UTHealth supports the educational, research, and service activities of its students by sponsoring and reimbursing certain approved travel activities and expenditures. All student travel funded by the university must be approved by Auxiliary Enterprises, University Travel. Enrolled students can find more detailed student travel information and requirements for international travel at https://inside.uth.edu/travel/student-travel/.

The university’s policy on Student Travel can be found online in HOOP Policy 61 (https://www.uth.edu/hoop/policy.htm?id=1447874).
Solicitation on Campus

No solicitation shall be conducted on UTHealth property unless permitted under HOOP Policy 165. Auxiliary Enterprises is the responsible office at UTHealth for coordinating the review and approval for solicitation on campus. All other inquiries or questions regarding the definitions outlined in the university policy should be directed to the Office of Legal Affairs.

The university's policy on Solicitation on Campus can be found online in HOOP Policy 165 (https://www.uth.edu/hoop/policy.htm?id=1448178).

Other Important Policies Affecting Students

The UTHealth Handbook of Operating Procedures (HOOP) lists other important policies affecting students and is divided into a Table of Contents found in the HOOP Disposition Table. Students are charged with knowledge of and compliance with all applicable UTHealth policies.

Some additional important HOOP Policies not outlined above with which students should be familiar are:

Policy Number:

109 General Standards of Conduct
https://www.uth.edu/hoop/policy.htm?id=1448066

9 Alcoholic Beverages, Chapter 2 University Citizenship
https://www.uth.edu/hoop/policy.htm?id=1447866

8 Use of University Name or Logo On Merchandise
https://www.uth.edu/hoop/policy.htm?id=1447864

11 Use of University Facilities
https://www.uth.edu/hoop/policy.htm?id=1447870

174 Speech and Assembly
https://www.uth.edu/hoop/policy.htm?id=1448196

167 Student Employment Appointments
https://www.uth.edu/hoop/policy.htm?id=1448182

56 Student Financial Aid
https://www.uth.edu/hoop/policy.htm?id=1447960

121 Student Loan Collections
https://www.uth.edu/hoop/policy.htm?id=1448090

57 Tuition, and Fees Payment, Refunds and Student Debt
https://www.uth.edu/hoop/policy.htm?id=1447962

60 Student Services
https://www.uth.edu/hoop/policy.htm?id=1447968

85 University Closure for Emergency, Disaster or Severe Weather
https://www.uth.edu/hoop/policy.htm?id=1448018

86 Medical Emergencies, Minor Injuries/Illnesses
https://www.uth.edu/hoop/policy.htm?id=1448020

87 Reporting Criminal Activity on Campus
https://www.uth.edu/hoop/policy.htm?id=1448022

168 Conduct of Research
https://www.uth.edu/hoop/policy.htm?id=d4f2609-f36b-41b0-8cbf479fa1f

202 Research Misconduct
https://www.uth.edu/hoop/policy.htm?id=1702018
The University of Texas
Graduate School of Biomedical Sciences
at Houston

General Information Section
2016 – 2018 Catalog

The University of Texas Health Science Center at Houston (UTHealth) is accredited by the Southern Association of Colleges and Schools Commission on Colleges to award certificate, baccalaureate, masters, doctoral, and professional degrees. Contact the Commission on Colleges at 1866 Southern Lane, Decatur, Georgia 30033-4097 or call 404-679-4500 for questions about the accreditation of The University of Texas Health Science Center at Houston.

The University of Texas MD Anderson Cancer Center is accredited by the Southern Association of Colleges and Schools Commission on Colleges (SACS) to award baccalaureate, masters, and doctoral levels. Contact the Commission on Colleges at 1866 Southern Lane, Decatur, Georgia 30033-4097 or call 404-679-4501 for questions about the accreditation of The University of Texas MD Anderson Cancer Center.

This catalog is a general information publication only. It is not intended to nor does it contain all regulations that relate to students. Applicants, students, and faculty are referred to the respective UTHealth School catalogs. The provisions of the General Information section or the School-specific information in each School catalog, student handbook or School policy or regulations do not constitute a contract, expressed or implied, between any applicant, student or faculty member and UTHealth or The University of Texas MD Anderson Cancer Center (MD Anderson) or The University of Texas System. UTHealth and MD Anderson reserve the right to withdraw courses at any time, to change fees or tuition, calendar, curriculum, degree requirements, graduation procedures, and any other requirement affecting students. Changes will become effective whenever the proper authorities so determine and will apply to both prospective students and those students already enrolled.

To the extent provided by applicable law, no person shall be excluded from participation in, denied the benefits of, or be subject to discrimination under any program or activity sponsored or conducted by UTHealth on the basis of race, color, national origin, religion, sex, sexual orientation, gender expression or gender identity, age, veteran status or disability.
Table of Contents

MESSAGE FROM THE UNIVERSITY OF TEXAS GRADUATE SCHOOL OF BIOMEDICAL SCIENCES DEANS

ACADEMIC CALENDAR
- Academic Calendar 2016-2017
- Academic Calendar 2017-2018

ADMINISTRATION

MISSION STATEMENT
- History and Purpose

THE FACULTY

GSBS STRUCTURE AND DEGREE PROGRAMS

DOCTOR OF PHILOSOPHY DEGREE IN BIOMEDICAL SCIENCES
- Curriculum
 - General Requirements
 - Tutorial Laboratory Requirements
 - Advisory Committee
 - Breadth Requirement
 - Ethics Course Requirement
 - Scientific Writing Requirement (for Students Matriculating in Fall 2014 and Thereafter)
 - MS Degree Bypass Programs
 - The PhD Candidacy Examination: Its Purpose
 - Petition for the PhD Candidacy Examination
 - PhD Candidacy Examination
 - Results of the PhD Candidacy Examination
 - Registration for PhD Dissertation
 - Expectations for the PhD Dissertation
 - Defense of the PhD Dissertation
 - Guidelines for the PhD Dissertation Defense
 - Completion of the PhD Requirements

DOCTOR OF MEDICINE/DOCTOR OF PHILOSOPHY DUAL DEGREE PROGRAM

MASTER OF SCIENCE DEGREE IN BIOMEDICAL SCIENCES
- General Course Requirements
- Ethics Course Requirement
- Petition to Candidacy for the MS Degree
- Defense of the MS Thesis
- Completion of the MS Requirements
- Individualized MS Degree
- Specialized MS Degree Programs: Genetic Counseling
- Specialized MS Degree Programs: Medical Physics
- Non-Degree Study
RESOURCES FOR GRADUATE EDUCATION

ADMISSION
Applicants for the PhD Degree Program
Applicants for the MS Degree Program
Application Procedures
Special Information for Foreign and Non-English-Speaking Applicants
Application Deadline
Essential Skills for Biomedical Scientists
Enrollment of Graduate Students from Affiliated Institutions
Non-Degree Students
Employees
Guidelines for Employees Who Wish to Pursue a PhD Degree

FINANCIAL SUPPORT

FEES AND EXPENSES
Tuition for Fall and Spring Semesters
Tuition for Summer Sessions
Fees and Charges

GENERAL REGULATIONS
Degree Requirements
Registration
Transfer Credit
Grading System
Grade Grievance Procedure
Probation
Dismissal
Student Conduct and Discipline
Leaves of Absence, Time Away from Duties, and Withdrawals

GSBS STUDENT GROUPS
Association of Minority Biomedical Researchers
First Generation
Graduate Student Association
Community Outreach
LGBT Student Alliance

COURSE OFFERINGS OF THE GENERAL FACULTY
COURSE OFFERINGS IN BIOSTATISTICS, BIOINFORMATICS AND SYSTEMS BIOLOGY
COURSE OFFERINGS IN MEDICAL PHYSICS
COURSE OFFERINGS IN BIOCHEMISTRY
COURSE OFFERINGS IN CELLULAR, MOLECULAR AND DEVELOPMENTAL BIOLOGY

COURSE OFFERINGS IN IMMUNOLOGY

COURSE OFFERINGS IN MICROBIOLOGY

COURSE OFFERINGS IN HUMAN GENETICS

COURSE OFFERINGS IN PHYSIOLOGY, REPRODUCTIVE BIOLOGY, PATHOLOGY AND COMPARATIVE MEDICINE

COURSE OFFERINGS IN PHARMACOLOGY AND TOXICOLOGY

COURSE OFFERINGS IN NEUROSCIENCE

OTHER COURSE OFFERINGS

MEMBERS OF THE FACULTY
Regular Members
Emeritus Professors
Associate Members
Distinguished Senior Lecturers
MESSAGE FROM THE UNIVERSITY OF TEXAS GRADUATE SCHOOL OF BIOMEDICAL SCIENCES DEANS

Welcome to The University of Texas Graduate School of Biomedical Sciences (GSBS) at Houston. Our school is built around the scientific expertise of two major institutions in the Texas Medical Center, MD Anderson Cancer Center and UTHealth, which are both members of the University of Texas System. In addition, we have faculty participation from Texas A&M Health Science Center Institute for Biosciences and Technology, and our students have access to graduate courses offered at nearby Rice University and Baylor College of Medicine. This breadth offers amazing opportunities in basic and translational scientific programs, leading the way in research and discoveries.

Our vision for the graduate school is to create a collaborative and innovative academic environment that inspires and lays the foundation for new generations of biomedical scientists to realize their potential, commit to success and have major impact on treatment of diseases worldwide.

Within this catalog you will find valuable information concerning our curriculum, research programs, academic activities and key policies and procedures for our graduate school. In addition, we encourage you to make full use of our website (https://gsbs.uth.edu) where you may access additional information to help you develop your strategy for completing your MS or PhD degrees at our institution.

Now is an incredible time to be training in the biomedical sciences. The technologies and information available today are unprecedented and provide opportunities for outstanding training and the ability to make discoveries that impact humanity. We look forward to partnering with you on your journey to achieve your goals in science and beyond.

Sincerely,

Michelle C. Barton, PhD Michael R. Blackburn, PhD
Dean Dean
Academic Calendar 2016-2017*

Fall Term 2016
- August 22: New Student Orientation Begin
- August 29: Fall Semester Begins
- September 5: Labor Day Holiday – no classes
- September 19: First Tutorial Begins
- November 24-25: Thanksgiving Holiday – no classes
- December 9: Last Day of Classes
- December 9: First Tutorial Ends
- December 12-16: Final Examinations
- December 16: End of Fall Semester

Spring Term 2017
- May 22: Summer Term Begins
- January 3: Second Tutorial Begins
- January 9: Spring Semester Begins
- January 16: MLK Holiday – no classes
- February 20: Presidents’ Day Holiday – no classes
- March 3: Second Tutorial Ends
- March 6: Third Tutorial Begins
- March 13-17: Spring Break – no classes
- April 28: Last Day of Classes
- May 1-5: Final Examinations
- May 5: End of Spring Semester
- May 12: Third Tutorial Ends
- May 20: Formal Commencement

Summer Term 2017
- May 22: Summer Term Begins
- May 29: Memorial Day Holiday – no classes
- July 4: Independence Day Holiday – no classes
- July 5: Second 6-Week Session Begins
- August 11: Last Day of Classes
- August 14-15: Final Examinations
- August 15: End of Summer Semester

This academic calendar is subject to change – the latest version is available on the GSBS website in the Academics section
ACADEMIC CALENDAR
2017-2018*

<table>
<thead>
<tr>
<th>Term</th>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall Term 2017</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>August 21</td>
<td>New Student Orientation Begins</td>
</tr>
<tr>
<td></td>
<td>August 28</td>
<td>Fall Semester Begins</td>
</tr>
<tr>
<td></td>
<td>September 4</td>
<td>Labor Day Holiday – no classes</td>
</tr>
<tr>
<td></td>
<td>September 18</td>
<td>First Tutorial Begins</td>
</tr>
<tr>
<td></td>
<td>November 23-24</td>
<td>Thanksgiving Holiday – no classes</td>
</tr>
<tr>
<td></td>
<td>December 8</td>
<td>Last Day of Classes</td>
</tr>
<tr>
<td></td>
<td>December 8</td>
<td>First Tutorial Ends</td>
</tr>
<tr>
<td></td>
<td>December 11-15</td>
<td>Final Examinations</td>
</tr>
<tr>
<td></td>
<td>December 15</td>
<td>End of Fall Semester</td>
</tr>
<tr>
<td>Spring Term 2018</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>January 2</td>
<td>Second Tutorial Begins</td>
</tr>
<tr>
<td></td>
<td>January 8</td>
<td>Spring Semester Begins</td>
</tr>
<tr>
<td></td>
<td>January 15</td>
<td>MLK Holiday – no classes</td>
</tr>
<tr>
<td></td>
<td>February 19</td>
<td>Presidents’ Day Holiday – no classes</td>
</tr>
<tr>
<td></td>
<td>March 2</td>
<td>Second Tutorial Ends</td>
</tr>
<tr>
<td></td>
<td>March 5</td>
<td>Third Tutorial Begins</td>
</tr>
<tr>
<td></td>
<td>March 12-16</td>
<td>Spring Break – no classes</td>
</tr>
<tr>
<td></td>
<td>April 27</td>
<td>Last Day of Classes</td>
</tr>
<tr>
<td></td>
<td>April 30-May 4</td>
<td>Final Examinations</td>
</tr>
<tr>
<td></td>
<td>May 4</td>
<td>End of Spring Semester</td>
</tr>
<tr>
<td></td>
<td>May 11</td>
<td>Third Tutorial Ends</td>
</tr>
<tr>
<td></td>
<td>May 19</td>
<td>Formal Commencement</td>
</tr>
<tr>
<td>Summer Term 2018</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>May 21</td>
<td>Summer Term begins</td>
</tr>
<tr>
<td></td>
<td>May 28</td>
<td>Memorial Day Holiday – no classes</td>
</tr>
<tr>
<td></td>
<td>July 4</td>
<td>Independence Day Holiday – no classes</td>
</tr>
<tr>
<td></td>
<td>July 5</td>
<td>Second 6-Week Session Begins</td>
</tr>
<tr>
<td></td>
<td>August 13</td>
<td>Last Day of Classes</td>
</tr>
<tr>
<td></td>
<td>August 14-15</td>
<td>Final Examinations</td>
</tr>
<tr>
<td></td>
<td>August 15</td>
<td>End of Summer Semester</td>
</tr>
</tbody>
</table>

This academic calendar is subject to change – the latest version is available on the GSBS website in the Academics section
ADMINISTRATION

Michelle C. Barton, PhD
Dean
(713) 500-9855
mbarton@mdanderson.org

Michael R. Blackburn, PhD
Dean
(713) 500-9880
Michael.R.Blackburn@uth.tmc.edu

Andrew J. Bean, PhD
Associate Dean of Education
(713) 500-9888
A.Bean@uth.tmc.edu

Patricia Cruz Bruesch, MS
Associate Dean of Management
(713) 500-9878
Patricia.Cruz@uth.tmc.edu

William Mattox, PhD
Associate Dean of Education
(713) 500-8802
wmattox@mdanderson.org

Eric C. Swindell, PhD
Assistant Dean of Graduate Education
(713) 500-9881
Eric.C.Swindell@uth.tmc.edu

Marenada A. Wilson-Pham, PhD
Assistant Dean of Diversity and Alumni Affairs
(713) 500-9856
Marenada.A.Wilson@uth.tmc.edu

Ellen R. Richie, PhD
Assistant Dean, Science Park
(512) 237-2403
erichie@mdanderson.org

R.W. Butcher, PhD
Dean Emeritus
MISSION STATEMENT

The mission of The University of Texas Graduate School of Biomedical Sciences at Houston (GSBS) is to train and educate research scientists and scientist-educators, to generate new knowledge in the biomedical sciences, and to increase public understanding of science.

Our goal is to maintain an innovative and diverse environment that provides an unprecedented breadth of opportunities for outstanding graduate students to train with leading biomedical scientists at The University of Texas MD Anderson Cancer Center, UTHealth and other institutions across the Texas Medical Center. The combined strengths of these institutions provide students with access to basic and translational scientific programs that are at the cutting edge of the fight to treat all major diseases. The curriculum is designed to provide students with a rigorous exposure to critical thinking strategies, area-specific scientific skills, and career development initiatives. This curriculum, together with an emphasis on research training and scientific productivity, is designed to position our students for an outstanding and successful career in the biomedical sciences.

The educational objectives are achieved through programs leading to the Doctor of Philosophy (PhD) and Master of Science (MS) degrees. These academic activities are carried out in research laboratories and classrooms under the guidance of GSBS faculty members from the schools of UTHealth and UT MD Anderson. As a comprehensive health science university, UTHealth’s mission is to educate health science professionals, discover and translate advances in the biomedical and social sciences, and model the best practices in clinical care and public health. UTHealth pursues this mission in order to advance the quality of human life by enhancing the diagnosis, treatment, and prevention of disease and injury, as well as promoting individual health and community well-being. UT MD Anderson Cancer Center’s mission is to eliminate cancer in Texas, the nation, and the world through outstanding programs that integrate patient care, research and prevention, and through education for our undergraduate and graduate students, trainees, professionals, employees, and the public. The Community Outreach program and other GSBS faculty and student public service activities are aimed at educating the public about the biomedical sciences, as well as promoting an interest in careers in science, particularly among elementary and secondary school students.

History and Purpose

In 1963, the 58th Session of the Texas Legislature authorized the Board of Regents of The University of Texas System to establish a Graduate School of Biomedical Sciences (GSBS) at UTHealth. The creation of the GSBS, with the approval of the Texas Commission on Higher Education, included the following general charge:

“The GSBS will conduct graduate programs at the masters and doctoral levels and postdoctoral programs in the sciences and related academic areas pertinent to medical education and research.”

The School is an important academic bridge between UTHealth components and the UT MD Anderson Cancer Center. The School is linked to the intellectual resources of the thousands of faculty associated with MD Anderson Cancer Center and the UTHealth Schools of Medicine, Dentistry, Public Health, Nursing, and Biomedical Informatics.
From its beginnings the School adopted an interdisciplinary approach to biomedical sciences education in contrast to more traditional departmentalized models focused on particular disciplines. The graduate programs of the School offer areas of concentration at the leading edge of education in the biomedical sciences. As a result, the School has attracted large numbers of outstanding faculty and students. School faculty has grown to 600 members, and currently there are about 400 degree-seeking students. Students frequently conduct their research in newly developing interdisciplinary or multidisciplinary areas in basic and translational research.

The challenge to health sciences universities in the 21st century is to integrate the academic and clinical aspects of biomedical research in order to understand and prevent illness, promote health, and restore normal function. The GSBS is in a unique position to meet that challenge by capitalizing on its distinguished faculty and its contemporary approach to graduate biomedical education.

The School is an integral and essential part of the academic activities not only of UTHealth but also of MD Anderson Cancer Center. Together, MD Anderson Cancer Center and UTHealth provide the supporting academic framework for the GSBS. The Texas Education Code stipulates that MD Anderson Cancer Center and UTHealth “…jointly prescribe courses and jointly conduct graduate programs at the masters and doctoral levels.” It is self-evident that graduate education in biomedical research is a key ingredient in the development of increased institutional excellence and is essential to the maintenance of national research excellence. Similarly, the School is absolutely dependent upon UTHealth and MD Anderson Cancer Center because School courses are taught by faculty members drawn from the two parent institutions, and because of the need for financial and administrative support. Thus, the relationship between UTHealth and MD Anderson Cancer Center is fundamental and symbiotic.

THE FACULTY

Faculty at the School is drawn from several UTHealth academic units (Medical, Dentistry, Biomedical Informatics, Public Health, and Nursing), from UT MD Anderson Cancer Center including the Science Park-Research Division at Smithville and Science Park-Veterinary Division in Bastrop, and from Texas A&M University Health Science Center Institute of Biosciences and Technology.

The research interests of the faculty span the entire range of the biomedical sciences. A listing of the faculty may be found at the end of this catalog; individual faculty profiles are available on the GSBS website.

GSBS STRUCTURE AND DEGREE PROGRAMS

Recognizing that contemporary biomedical research often involves interdisciplinary approaches, the faculty has developed its educational programs to make its vast resources available to students with minimal constraints. Major emphasis is placed on studies leading to the PhD degree, but all PhD students may elect to complete an MS degree prior to starting dissertation studies. Students with specific interests in acquiring technical and specific professional skills may be admitted to courses of study for the MS degree. In addition, persons who wish to take courses and/or conduct research, but not as part of a formal degree program, may be admitted as non-degree students. Degree and non-degree programs offered at the School are described in the following sections.
DOCTOR OF PHILOSOPHY DEGREE IN BIOMEDICAL SCIENCES

The PhD degree program is designed to offer students the opportunity to complete didactic and laboratory studies through which they may gain the expertise to conduct independent and creative research that contributes new knowledge in an area of the biomedical sciences.

Curriculum

Successful students in this degree program will develop the necessary skills to conduct novel research at a professional level, learn the theoretical background for their particular area of study, and become familiar with the issues of biomedical ethics that interface with their chosen fields of study. To this end, the faculty has developed a challenging seven-step curriculum that gives the student the opportunity to attain the skills necessary to pursue a career in biomedical research. The seven steps of the curriculum include:

1. Tutorial laboratory experiences: This experience is primarily designed to offer a student the opportunity to select an area of research for their research dissertation and a mentor to guide this research. This phase of the curriculum occupies approximately one-half of the student's day for the first two semesters of study. During this time, the student must develop competence in research in three different tutorial laboratories.

2. Breadth in the biomedical sciences: Each student is required to develop a broad awareness of several different areas in the biomedical sciences. Most first-year PhD students are required to take a one-semester Core Course entitled Foundations of Biomedical Research (GS211017) to satisfy the breadth requirement. The remaining PhD students take Program-specified courses to address breadth of knowledge.

3. Depth in the biomedical sciences: Students who matriculated in Fall 2012 and thereafter are required to join a GSBS Program and demonstrate knowledge in the Program area by meeting Program-specific course requirements.

4. Appreciation of the ethical issues in biomedical research: Each student is required to demonstrate knowledge in biomedical ethics by passing a course entitled The Ethical Dimensions of the Biomedical Sciences (GS211051). The course, taught by School faculty, will provide students with a framework to recognize, examine, and resolve ethical conflicts in their professional lives. The course explores such issues as the commitment to truth and its breakdown; the ethics of authorship; experimentation with human and animal subjects; and the relationships of scientists to industry, society at large, and future generations. In addition, two on-line modules, “Data Acquisition and Management” and “Responsible Authorship and Publication” must also be successfully completed by all students.

5. Scientific writing ability: Each student is required to demonstrate knowledge in scientific writing either by passing a course entitled Scientific Writing (GS211152) or by passing an approved scientific writing course.

6. Capability to formulate a significant research problem: Each student is given the opportunity to develop the skills needed to formulate a significant research problem in one of the GSBS Areas of Research Concentration approved by the Texas Higher Education Coordinating Board. The attainment of this skill is demonstrated by the student's passing an oral candidacy examination, which tests the student's depth of preparedness for undertaking a research problem and knowledge of the pertinent scientific background.

7. Ability to perform research that significantly contributes to the scientific body of knowledge: The student performs research and writes a dissertation under the guidance of an advisory
committee. Students must demonstrate competence in the formulation and performance of original research. After completing the research and writing the dissertation, the student must present a public seminar of the research findings and successfully defend the dissertation.

- Prior to the defense, students who matriculated between Fall 2008 and Summer 2014 must submit at least one first-authored paper related to their education and research at GSBS to a peer-reviewed journal for publication.

- Students who matriculate in Fall 2014 and thereafter must also submit at least one first-authored paper to a peer-reviewed journal for publication prior to the defense, and the paper must be accepted for publication prior to graduation.

The student’s Advisory Committee must approve the quality of the journal. A request for exception to these policies must be endorsed by the Advisory Committee and approved by the Academic Standards Committee. All completed dissertations are available to the public.

The seven steps in the curriculum of the PhD program described above represent the general GSBS academic requirements. Additional course work included in a student’s program of study is selected by the student and a faculty advisory committee. The program of study should be selected to provide the student with educational experiences appropriate to the scientific disciplines with which the dissertation research is concerned.

General Requirements

The University of Texas Graduate School of Biomedical Sciences at Houston requires a minimum of 72 credit hours to obtain the degree of Doctor of Philosophy (PhD). Note, however, that due to the extensive course requirements of the Medical Physics area of concentration, students specializing in Medical Physics must complete a minimum of 82 semester credit hours.

Students are required to register as full-time students each term, for a total of 24 credit hours earned each year. The average time to completion of the PhD degree is 5.4 years. Thus, PhD students, on average, complete 135 credit hours by the completion of the degree requirements.

The 72 credit-hour minimum includes 1 credit hour of the Ethical Dimensions of the Biomedical Sciences (GS211051), 6 credit hours of Tutorial Research Experience (GS001514), 7 credit hours of Foundations of Biomedical Research (GS211017) or required School area requirement courses, 2 credit hours of Scientific Writing (GS2111152) or another approved scientific writing course, any required Program-specific coursework, and a minimum of one year of registration for research, which includes Research in Biomedical Sciences (GS001520) and Dissertation for Doctor of Philosophy (GS001920). Any exceptions to this minimum credit-hour requirement must be approved by the Dean upon recommendation by the Academic Standards Committee. The majority of these 72 credit hours (i.e., over 50%), plus the majority of any additional coursework required by the Academic Standards Committee or the student’s advisory committee, must be taken in residence at the School, at other UT schools, or at an institution with which a consortium arrangement exists (e.g., Rice University, the University of Houston, Baylor College of Medicine, etc.).

Tutorial Laboratory Requirements

PhD students must complete, with a grade of “Pass”, three different tutorial laboratory rotations under the supervision of three different GSBS faculty members.

The tutorials are each worth two credit hours (10 weeks per tutorial, 20 hours per week, or other arrangements resulting in a total of 200 hours in the laboratory) and are normally taken during
the first two semesters. The tutorial laboratory experience serves the dual role of introducing the incoming student to a variety of research environments and allowing the student the opportunity to select an advisor to supervise future dissertation research.

One tutorial requirement may be waived at the discretion of the Dean of Academic Affairs if:

1. The student has a Masters degree from another institution, provided the MS degree involved laboratory research and the preparation of a thesis; or
2. The student has had post-baccalaureate laboratory research experience judged to be equivalent to a tutorial rotation; or
3. The student has authored peer-reviewed publications in the biomedical sciences.

Waiver of more than one tutorial requirement will not be permitted except in extraordinary circumstances. Students wishing a tutorial waiver must submit a written request for waiver to the Dean of Academic Affairs. Tutorial waivers will be considered only for students who have identified the laboratory in which they will remain for their dissertation research. Therefore, the request must also be accompanied by a letter from the student’s proposed advisor supporting the waiver. Students who are allowed to waive a tutorial requirement on the basis of their GSBS MS degree may not complete a tutorial in that same lab, i.e., they must complete their remaining tutorials in two other labs.

Advisory Committee

Upon the completion of the tutorial rotations, the student identifies a research Advisor. The student, with the assistance of the Advisor, proposes an Advisory Committee and submits the proposal to the Academic Standards Committee for its approval. Upon approval by the Academic Standards Committee and the Dean, the Advisory Committee members are notified of their appointment. The student must meet with the Advisory Committee at least every 6 months to keep them apprised of progress toward the degree. As the student’s research progresses, a change in focus may necessitate a change in committee membership. This change must be approved by the Academic Standards Committee.

Breadth Requirement

Most PhD students are required to pass a one-semester Core Course entitled Foundations of Biomedical Research (GS211017). This course provides incoming graduate students with a broad overview of modern biomedical sciences, spanning historical perspectives to cutting edge approaches. The course combines traditional didactic lectures and interactive critical thinking and problem solving exercises to provide students with a strong background in fundamental graduate-level biological topics including genetics, molecular and cellular biology, biochemistry, physiology, developmental biology and biostatistics. The remaining PhD students are required to pass Program-specific courses to meet this requirement.

The breadth requirement must be met before the student petitions to take the PhD candidacy examination. The goals of this requirement are to:

• Provide students with a breadth of knowledge in relevant areas of biomedical sciences,
• Enhance their critical thinking and communication skills, and
• Facilitate creative collaboration between biomedical scientists trained in depth in different disciplines.
A description of the Core Course is posted on the GSBS website and is available in the Office of Academic Affairs. A listing of Program-specified breadth courses is available in the Office of Academic Affairs.

Recognition of Previous Graduate Course Work to Substitute for GSBS Required Courses

Students may petition to substitute previous graduate coursework taken at another institution for any course requirement by providing documentation that the course is equivalent to the required GSBS course. Such requests must be approved by the Dean of Academic Affairs in the Office of Academic Affairs. Undergraduate-level courses are unacceptable as substitutes for GSBS courses.

Ethics Course Requirement

All students are required to pass a course entitled The Ethical Dimensions of the Biomedical Sciences prior to petitioning for candidacy. The aim of the course, taught by School faculty, is to provide students with a framework to recognize, examine, and resolve ethical conflicts in their professional lives. The course explores such issues as the commitment to truth and its breakdown; the ethics of authorship; experimentation with human and animal subjects; and the relationships of scientists to industry, society at large, and future generations. In addition, two on-line modules, “Data Acquisition and Management” and “Responsible Authorship and Publication” must also be successfully completed by all students.

Scientific Writing Requirement (for Students Matriculating in Fall 2014 and Thereafter)

All PhD students are required to pass a course entitled Scientific Writing (GS211152), or another approved scientific writing course, prior to petitioning for candidacy.

MS Degree Bypass

Students will be considered for a bypass of the MS degree only after satisfactory completion of the PhD candidacy examination. A recommendation from the Examination Committee that the student should be permitted to bypass the MS degree will be reviewed by the Academic Standards Committee.

Completion of the Master of Science degree is recommended for students:

1. With little experience in laboratory research; or
2. Who have not written research papers or literature reviews; or
3. Who would benefit from the opportunity to pursue a research project under close supervision; or
4. Who need significant improvement in written and oral communication; or
5. Who have not determined which biomedical problem(s) they intend to pursue independently.
Programs

Faculty members have established formal programs of study to provide students with a structured curriculum within an area of research or a department. The Programs, approved by the Texas Higher Education Coordinating Board, provide students with a recommended series of courses appropriate for the area, collective advice on research training from the faculty members of the program, and provide an opportunity for interaction between students and faculty who have similar research interests.

PhD students matriculating in Fall 2012 or thereafter are required to affiliate with a Program by the end of their first year of study.

The curricular recommendations developed by the Programs provide sufficient flexibility to permit students to develop an individualized program of study within the Program’s framework. At the PhD level, current organized Programs of study include:

- Biochemistry and Molecular Biology
- Biostatistics, Bioinformatics and Systems Biology
- Cancer Biology
- Cell and Regulatory Biology
- Clinical and Translational Sciences
- Epigenetics and Molecular Carcinogenesis
- Experimental Therapeutics
- Genes and Development
- Human and Molecular Genetics
- Immunology
- Medical Physics
- Microbiology and Molecular Genetics
- Neuroscience

Further information about PhD Programs and the faculty affiliated with them may be obtained from the GSBS website (https://gsbs.uth.edu) or the Office of Academic Affairs.

The PhD Candidacy Examination: Its Purpose

The purpose of the candidacy examination is to test the breadth and depth of knowledge in the biomedical sciences. The examination is meant to be an evaluation of the student’s ability to construct an hypothesis, to design the means by which to test it, and to critically analyze obtained results. The purpose of the oral candidacy examination is to give the student the opportunity to demonstrate:

- An understanding of the research area in which he or she is being tested;
- The ability to formulate a research problem and to comprehend its significance; and
- The ability to design appropriate experimental approaches to solve the problem.

A student’s performance will be regarded as satisfactory only if the student:

- Demonstrates an adequate knowledge of the field and the research specialty in which he or she is being tested;
- Formulates a research problem, the solution of which will make a substantial contribution to
our existing knowledge;

• Makes sound judgments about the proposed experimental design and can interpret critically the results anticipated; and

• Demonstrates that the experimental design and methods proposed are appropriate to solving the problem.

Petition for the PhD Candidacy Examination

Students are required to petition for PhD candidacy by the end of the second year following matriculation.

Before submitting the petition for the candidacy exam, the student must have eliminated all deficiencies identified by the student's Advisory Committee and completed the tutorials, scientific writing (for students who matriculated in Fall 2014 and thereafter) and ethics requirements, and either the Core Course or the Area course requirements.

PhD students must pass a candidacy exam in the format required by the student's Program. Program exam requirements and guidelines are posted on the GSBS website in the Academics section.

PhD Candidacy Examination

All PhD students must prepare and defend a research proposal as part of their candidacy examination. The candidacy examination should take place in the first semester of the third year following matriculation after the petition is approved by the Academic Standards Committee. The candidacy examination tests both breadth and depth of the student's understanding of a defined research area. The examination includes both written and oral components.

It is the student's responsibility to select the date, time, and place of the examination. If a member of the Examining Committee is unable to attend the examination, a substitute who meets the same criteria (e.g., outside the student's major interest or from another department/Program) should be added. The new member must be approved by the Dean of Academic Affairs.

Results of the PhD Candidacy Examination

The Chair of the Examining Committee is responsible for submitting the results of the examination to the Office of Academic Affairs for review by the Academic Standards Committee. The results of the examination will be one of the following (students are recommended to candidacy by the Academic Standards Committee and admitted to candidacy by the Dean only after review and approval of the examination results):

• Student passes unconditionally. The Examination Committee, where appropriate, also may recommend that a student who receives an unconditional pass may bypass the MS degree.

• Student passes conditionally, with the conditions clearly stated, i.e., the exact nature of the deficiency(ies) along with a suggested mechanism to repair the deficiency(ies). The Examining Committee may choose to formulate the final mechanism for removing the deficiency(ies), or the Examining Committee may at its discretion assign this responsibility to the student's Advisory Committee. Conditions must be fulfilled within one year of the exam date. The Chair of the Examining Committee must write a letter of certification to the Office of Academic Affairs when the student has resolved the conditional pass. The Chair of the
Examiner Committee must serve as a member of the Advisory Committee, at least until the conditional pass has been resolved. Requests for an extension of the one-year deadline, with justification by the Advisory Committee, must be submitted to the Academic Standards Committee for its approval. In all cases, conditions must be fulfilled before the student requests the defense of the PhD dissertation.

- Student is to be re-examined at some future date before the Examining Committee will render a decision. Results of the first exam (where it was determined that the student would be re-examined) should be submitted to the Office of Academic Affairs immediately following the exam. Specifically, in a memo to the student and the Academic Standards Committee, the Chair of the Examining Committee should describe areas that need improvement, areas of strength, conditions for re-exam and a deadline for the re-exam (maximum one year after original exam). The exam committee for the re-evaluation must be composed of the same faculty members that conducted the first exam. Upon re-examination, the Committee may only elect to Unconditionally Pass or Fail the student. Students may be re-examined only once. The Chair of the Examining Committee must separately communicate to the Office of Academic Affairs the result of the re-exam. If the student fails to successfully complete the re-examination prior to the deadline determined by the Examining Committee (not to exceed one year from the first examination), the Academic Standards Committee will dismiss the student from the PhD program.

- Student fails. Failure of the examination means the Examining Committee has determined the student has not demonstrated the requisite potential to complete the PhD program, and the Academic Standards Committee will dismiss the student from the PhD program. The Committee may, at its discretion, determine that the student will be permitted to continue towards a terminal MS degree. Subsequent to dismissal, the student may re-apply to the School; the application will be considered in competition with other applications pending at the time.

Registration for PhD Dissertation

After being admitted to candidacy for the PhD degree, the student is permitted to register for Dissertation for Doctor of Philosophy (GS001920). The student must register for at least one semester of Dissertation before becoming eligible for the PhD dissertation defense. The student must be registered for Dissertation in the final semester in which requirements are completed.

Expectations for the PhD Dissertation

The following are expectations for the PhD dissertation, established by the GSBS Faculty. They are based on the Council of Graduate Schools publication, “Requirements for the PhD”.

Nature and Purpose

The doctoral dissertation is the final and most important component of the series of academic experiences, which culminate in the awarding of the PhD degree. Four major functions are fulfilled by the dissertation experience:

- It is a work of original research or scholarship which makes a contribution to existing knowledge;
- It is an educational experience which demonstrates the candidate’s mastery of research methods and tools of the specialized field;
• It demonstrates the student’s ability to address a major intellectual problem and arrive at a successful conclusion; and
• It demonstrates that the student possesses the potential to function as an independent researcher.

In view of the wide range of fields of knowledge in which the PhD degree is awarded, it is not feasible to set specific requirements and standards for this degree. Nevertheless, there is a general -- and usually explicitly stated -- agreement among American universities that the doctoral dissertation should be a distinct contribution to knowledge, and of sufficient value to warrant its publication in a reputable journal, or as a book or monograph.

Relationship with MS Thesis

GSBS students may utilize a Masters degree project as the basis of the hypotheses to be tested by the doctoral research. The PhD dissertation must not include data that are part of the MS thesis. Data from the MS thesis may be included in the dissertation as part of the Introduction or as an appendix. In all cases, data from the MS thesis must be identified clearly as originating from the previous work. Furthermore, the PhD dissertation must have a title that is distinct from the MS thesis.

Defense of the PhD Dissertation

At a time deemed appropriate by the Advisory Committee, the student will submit a complete draft of the dissertation to each member of the Advisory Committee, together with the form requesting to defend the PhD dissertation. The completed defense form and a one-page summary of the research must be submitted to the Office of Academic Affairs.

• Prior to the defense, students who matriculated between Fall 2008 and Summer 2014 must submit at least one first-authored paper related to their education and research at GSBS to a peer-reviewed journal for publication.

• Students who matriculate in Fall 2014 and thereafter must submit at least one first-authored paper related to their education and research at GSBS to a peer-reviewed journal for publication prior to the defense, and the paper must be accepted for publication prior to graduation.

The student's Advisory Committee must approve the quality of the journal. A request for exception to these policies must be endorsed by the Advisory Committee and approved by the Academic Standards Committee.

The dissertation defense will be held no sooner than two weeks or later than three months after the request form is received by the Office of Academic Affairs and approved by the Dean.

Guidelines for the PhD Dissertation Defense

The purpose of the dissertation defense is to provide a consistent and complete evaluation of the dissertation and the student’s understanding of the research, as well as the student’s ability to report information to the scientific community in a well-organized and interesting form.

An announcement of the defense will be distributed by electronic mail to GSBS students and faculty and posted on various bulletin boards throughout the Texas Medical Center.
Guidelines for the defense are:

- The student will deliver a 45- to 60-minute public presentation, including a detailed description of the background, rationale, materials and methods, results, and conclusions appropriate to the research. Following the presentation, the student will respond to questions from the audience.

- Immediately thereafter, and at a location announced at the end of the seminar, the Advisory Committee will examine the student on the dissertation. Any member of the GSBS Faculty who attends the public presentation may participate in the examination to the extent described below. Others wishing to attend must be approved by the Advisory Committee.

- The student's Advisor will serve as moderator of the examination. The student will be expected to respond to questions from those attending on any aspect of the written dissertation or the material presented at the public presentation.

After the examination, the student will meet privately with the Advisory Committee to discuss the results. Finally, the Advisory Committee will determine what recommendation to make to the Dean and the Academic Standards Committee. The Committee may conclude that the student has passed, or it may require additional research, modifications to the dissertation, and/or another defense. Within one week after the dissertation defense, the results of this meeting will be communicated through the Office of Academic Affairs to the Dean and the Academic Standards Committee for their information and approval.

Within one week of the dissertation defense, any School Faculty member who has read the student's dissertation and has attended the defense may write directly to the Dean to provide an evaluation of the student's performance. In reaching a final decision on whether to award the PhD or require further work and/or another defense, the Dean will take into consideration the recommendation of the Advisory Committee and other comments received from School Faculty. In particular cases, the Dean may solicit additional evaluations of the dissertation from experts in the field either within or outside the School Faculty.

The decision of the Dean will be communicated to the student and the Advisory Committee within one month of the dissertation defense.

Completion of the PhD Requirements

The PhD degree is not awarded until: the student has successfully completed the dissertation defense; the unbound dissertation, approved by the Advisory Committee, is submitted to the Office of Academic Affairs for the Dean’s signature; the first-authored paper requirement has been met; and all exit forms are completed and submitted to the Office of Academic Affairs. The student must be registered for Dissertation in the final semester in which requirements are met.

Students must also complete a form indicating the dissertation-related research areas to be listed on the diploma. Students may request to list none, one or two areas on the diploma. If areas are listed, the first must be the Program with which the student is affiliated. The second area must correspond to one of the GSBS Areas of Research Concentration approved by the Texas Higher Education Coordinating Board.

The degree will be issued as of the final day of the semester in which all degree requirements have been met. The PhD degree must be completed within seven years of first registration in GSBS. Students may continue registration in GSBS after the seven-year limit only with the
express written permission of the Dean.

DOCTOR OF MEDICINE/DOCTOR OF PHILOSOPHY DUAL DEGREE PROGRAM

The UTHealth McGovern Medical School, Graduate School of Biomedical Sciences, and the UT MD Anderson Cancer Center participate in a combined program leading to both MD and PhD degrees. This program is sponsored and supported by UTHealth and UT MD Anderson Cancer Center and provides a stipend, tuition and fees, and health insurance support during MD and PhD training. Extensive basic and translational research opportunities and participation of more than 500 faculty members from both institutions provide a unique environment and resources for training combined degree students. The MD/PhD program training structure is also unique and is organized to train physician scientists. Students complete the first three years of medical school training prior to starting their dissertation research. Thus, the students enter the graduate school with a comprehensive understanding of human disease that can inform and direct their dissertation research. Requirements of both degrees are typically completed in seven years. The program is administered by an MD/PhD Committee, which is comprised of faculty at both institutions.

Students must meet the admissions requirements of the McGovern Medical School to qualify for admission to the MD/PhD program. The program is restricted in size and provides stipend support for exceptional MD/PhD candidates. For information, visit the website at https://gsbs.uth.edu/mdphd/.

Those interested in the MD/PhD Program should inquire through the Admissions Office of the McGovern Medical School. Application for admission to the MD/PhD Program may be made by submitting an application online through the American Medical College Application Service (AMCAS) and a mandatory secondary application online at https://gsbs.uth.edu/mdphd/apply-here.htm. Three letters of recommendation (two general letters and an additional letter from a research mentor) are also required and should be submitted through AMCAS. The deadline is November 1st.

MASTER OF SCIENCE DEGREE IN BIOMEDICAL SCIENCES

Students enrolled in MS degree programs are provided the opportunity to gain mastery of the scientific background of their discipline and their specific research problem. Such mastery is acquired from didactic instruction and individual study of the scientific literature. Laboratory studies provide opportunities to gain technical facility with the methods required for investigation. The preparation of the MS thesis provides experience in stating a research problem within the framework of contemporary knowledge, presenting the rationale for the technical approach to be taken in solving the problem, presenting valid and reproducible results obtained by the application of methodology appropriate to the problem, and providing a coherent analysis of the results and the conclusions drawn from this analysis.

The acquisition of technical expertise should be the major objective of students at the MS degree level, and the MS thesis should evidence the student's mastery of the knowledge and technology required for the solution of the research problem. While studies at the MS level may place less emphasis than those at the PhD level on the scope and magnitude of the intellectual contribution, the MS thesis should demonstrate the student's creativity in the solution of a scientific problem. The thesis should be an original document written by the student.
The MS degree is an important component of the School's educational program. Although many students currently bypass the MS portion of the PhD program, the Faculty continues to recognize the value of studies for the MS degree for some PhD students, as well as for students seeking graduate training available through individualized or specialized MS programs.

General Course Requirements

The MS program of work must consist of 36 credit hours (minimum) of coursework, which must include one credit hour of The Ethical Dimensions of the Biomedical Sciences plus the two online Ethics modules, at least six credit hours of Thesis for Master of Science and a minimum of six credit hours of Research in Biomedical Sciences. A minimum of 12 credit hours of didactic courses, graded A/F, must be taken. Other didactic courses, Literature Survey, Special Project: Course, and Special Project: Research may be used toward the remaining required credit hours. The majority (i.e., over 50%) of these 36 credit hours, plus the majority of any additional coursework required by the Academic Standards Committee or the student's Advisory Committees, must be taken in residence at GSBS, at other UT schools, or at an institution with which UTH ealth has consortium arrangements (e.g., Rice University, the University of Houston, Baylor College of Medicine, etc.).

Students in an MS degree program who have completed graduate courses in the general area of biomedical sciences at another institution may request that credit hours earned elsewhere be used toward the GSBS requirement. While there is no limit to the number of hours for which a student may be credited, no more than two courses may be used toward the GSBS requirement. The student must have received at least a C (if the course awards letter grades of A, B, C or F) or P (if the course was graded pass/fail) in the course to be awarded GSBS credit hours. The grades from such courses taken at other institutions will not be used in the calculation of the cumulative grade point average.

The following rules apply to registration for *Special Project: Course, Special Project: Research,* and *Literature Survey*:

- **Special Projects** should not exceed four hours per semester and Literature Surveys should not exceed two hours per semester.
- No more than 6 credit hours of **Special Project (or Tutorial Research Experience)** plus **Literature Survey** may be accepted toward meeting the 36 credit hours required for completion of the MS degree.
- If more than one **Special Project: Research** is included in the MS program of work, the projects must be supervised by different instructors.
- Degree students will not be permitted to use credit hours in **Special Project: Research** taken while they were non-degree students toward meeting the 36 credit hours required for completion of the MS degree.

Ethics Course Requirement

All MS students (including those completing an MS in a specialized area) are required to pass a course entitled The Ethical Dimensions of the Biomedical Sciences. The aim of the course, taught by School Faculty, is to provide students with a framework to recognize, examine, and resolve ethical conflicts in their professional lives. The course explores such issues as the commitment to truth and its breakdown, the ethics of authorship, experimentation with human and animal subjects, and the relationships of scientists to industry, society at large, and future
generations. This course, and two online ethics modules, “Data Acquisition and Management” and “Responsible Authorship and Publication,” must be completed before the student petitions for candidacy.

Petition to Candidacy for the MS Degree

A petition to candidacy for the Master of Science degree must be submitted to the Academic Standards Committee for approval. The petition consists of the program of work, an abstract of the proposed research, and the proposed members of the Advisory Committee. The program of work should indicate the courses that will be used to fulfill the minimum 36 semester credits for the MS; for purposes of the petition to candidacy this may include courses taken, in progress, and/or planned. The petition must be approved by the Academic Standards Committee and the student admitted to candidacy before the student can receive credit for the first semester of Thesis. The petition should be submitted within one year of admission to the MS program or within two years of admission to the PhD program, or for MD/PhD students, after the first full year of enrollment in the School. If an extension is requested, written justification must be provided to the Academic Standards Committee for its approval.

Defense of the MS Thesis

During the final semester of Thesis, the student must submit for approval by the Dean a form to request the defense of the MS thesis. The form, with a one-page summary of the research, should be submitted to the Office of Academic Affairs at least 14 days before the scheduled thesis defense. The Office of Academic Affairs checks to be certain that all courses included in the program of work have been completed. If all is in order, an announcement of the thesis defense will be distributed by electronic mail to GSBS students and faculty and is posted on appropriate bulletin boards throughout the Texas Medical Center. If the program has not been completed, the student and the Committee are notified and the thesis defense will not be permitted until the required courses have been completed.

Completion of the MS Requirements

The MS degree is not issued until the student has successfully completed the defense; the unbound thesis, approved by the Advisory Committee, is submitted to the Office of Academic Affairs for the Dean’s signature; all grades are received; and all exit forms are completed and submitted to the Office of Academic Affairs. The MS degree is awarded on the last day of the semester in which all requirements are completed. The student must be registered for Thesis in the final semester in which requirements are met.

All requirements for the MS degree must be completed within three years of first registration in GSBS. Students may continue registration in GSBS after the three-year limit only with the express written permission of the Dean. Students admitted to the School for the express purpose of obtaining only an MS degree and who wish to work for a PhD must reapply for admission to a PhD program.

Operating within this general framework for the MS degree in Biomedical Sciences are the individualized MS degree option and two specialized programs, Genetic Counseling and Medical Physics. All degrees awarded will be termed Masters of Science in Biomedical Sciences.
Individualized MS Degree

Qualified students may be admitted to the School to pursue an MS degree in Biomedical Sciences or, with approval of the Program Director, in a Program area. With the advice and consent of an advisory committee, the student will construct a plan of study, including didactic course work and a thesis topic appropriate to his or her particular interests. The degree can sometimes be completed in two years of full-time study, although the School permits students three years for completion of degree requirements.

Specialized MS Degree Programs: Genetic Counseling

The specialized Master of Science degree in Genetic Counseling is designed for individuals who seek a terminal MS degree with requisite education in genetic counseling. The program’s objective is to provide comprehensive training in genetic counseling, with graduating students demonstrating proficiency in genetic counseling competencies and having accrued a substantial and diverse clinical case experience in order to sit for the American Board of Genetic Counseling credentialing exam. The program’s challenging curriculum provides training in medical genetics and genomics, cancer genetics, prenatal genetics, psychosocial counseling, and genetic counseling research. Students receive an in-depth exposure to a variety of genetics clinics. In addition to the aforementioned general MS requirements, the more stringent and specific Genetic Counseling Program requirements include the successful completion of specialized courses, clinical rotations, a Master of Science thesis, and an oral comprehensive exam. The program is fully accredited by the Accreditation Council for Genetic Counseling, located at 18000 W. 105th Street, Olathe, KS 66061. Telephone: 913.895.4629; Fax: 913.895.4652; Website: www.gceducation.org.

Curriculum

Genetic Counseling students take classes in the areas of cancer genetics, prenatal genetics, and medical genetics, research methodology, ethics, and psychosocial counseling. The majority of course work is completed by the end of the first year. Clinical rotations and the completion of a Master of Science thesis research project dominate the second year. Required course work includes (credit hours in parentheses):

- Introduction to Genetic Counseling (2)
- Embryology (1)
- Topics in Medical Genetics I (2)
- Topics in Medical Genetics II (2)
- Approaches to Research in Genetic Counseling I (2)
- Approaches to Research in Genetic Counseling II (2)
- Psychosocial Issues in Genetics (2)
- Psychosocial Genetics Practicum (1) x2
- The Ethical Dimensions of the Biomedical Sciences (1)
- Cancer Genetic Counseling (2)
- Prenatal Genetic Counseling (1)
- Contemporary Issues in Genetic Counseling (1) x2
- Introductory Clinical Rotations (3)
- Advanced Clinical Rotations (4) x3
- Research in Biomedical Sciences (2)
- Masters Thesis Research (7)
MS Thesis

Students are expected to propose and complete a clinically-oriented or laboratory research question that includes study design, collection of data, data analysis, and a written thesis. A written thesis and oral defense of the thesis are required for graduation.

Clinical Rotations

Clinical experience is an essential aspect of genetic counseling training. Students at UTHealth receive cases of significant depth and breadth in the genetic counseling arena. Typically, students see over 200 clinical cases, well above the minimum standard of 50 logbook cases needed to sit for the board examination offered by the American Board of Genetic Counseling. After completing their clinical training, students should be well-prepared, flexible genetic counselors, familiar with the needs of an increasing diverse clientele.

Oral Comprehensive Exam

In order to assess a student’s ability to synthesize didactic classroom experiences for application in the clinical setting, students must pass an oral comprehensive examination of both knowledge and counseling skills. Students who are not able to demonstrate adequate skills will be required to complete remediation. Failure by a student to pass two attempts at the oral competency exam will require the student to undertake extended remediation. Extended remediation could likely delay graduation; unsuccessful remediation will result in dismissal from the Program.

Prerequisites

Admissions requirements are those established by GSBS for the MS program. A Subject Test of the GRE is recommended, but not required. A cumulative undergraduate GPA of 3.0 or greater is required. Successful applicants generally have a GPA of 3.5 or better, and GRE scores in the 75% range. However, the Genetic Counseling Program considers the entire application when selecting applicants to interview.

The following background is strongly recommended:

- Client advocacy experience (crisis counseling/Planned Parenthood)
- Volunteer experience (e.g., working with individuals with disabilities)
- Genetic counseling internship/shadowing/exposure
- Undergraduate or graduate coursework in
 - Biology
 - Psychology
 - Genetics
 - Chemistry
 - Biochemistry
 - Calculus
 - Statistics
An interview at the School is required for admission to the Program. On average, the Program receives 100 applications each year and interviews approximately 35 candidates. Offers to interview are extended in early March after the applications are reviewed.

Further information concerning the prerequisites or academic requirements for this program may be obtained by writing to:

Claire N. Singletary, MS, CGC
Department of Pediatrics
The UTHealth McGovern Medical School
P.O. Box 20708
Houston, Texas 77225
Claire.N.Singletary@uth.tmc.edu

Specialized MS Degree Programs: Medical Physics

The Specialized Master of Science in Medical Physics Program prepares students for a clinically-oriented career in medical physics in a healthcare environment, a clinical support research laboratory or a clinical support industry. A graduate of the Program would also be prepared for entry into a PhD program in medical physics or into a clinical medical physics residency program. The Program curriculum educates the student in the areas of radiation oncology physics, diagnostic imaging physics, and medical health physics related to both ionizing and non-ionizing radiation. The area of radiation oncology physics emphasizes radiotherapy; the area of diagnostic imaging physics includes both diagnostic radiology and nuclear medicine; and the area of medical health physics includes protection from ionizing and non-ionizing radiation. The Program’s requirements entail coursework, thesis research and clinical rotations. The Program is accredited by the Commission on Accreditation of Medical Physics Education Programs, Inc., located at 1631 Prince Street, Arlington, VA 22314-2818. Telephone: 517-298-1239 Fax: 517-298-1301; Website: www.campep.org.

Coursework

1. The student must complete a minimum of 32 hours of required courses.
 Required Courses (semester hours in parentheses)
 - Mathematics for Medical Physics (3)
 - Introduction to Medical Physics I: Basic Interactions (3)
 - Introduction to Medical Physics II: Medical Imaging (3)
 - Introduction to Medical Physics III: Therapy (3)
 - Introduction to Medical Physics IV: Nuclear Medicine (3)
 - Electronics for Medical Physicists (3)
 - Radiation Detection, Instrumentation, and Data Analysis (3)
 - Radiation Biology (2)
 - Introduction to Radiation Protection (3)
 - Anatomy and Oncology for Medical Physicists (2)
 - Medical Physics Seminar (3 semesters x 1 hour / semester; 3)
 - The Ethical Dimensions of the Biomedical Sciences (1)

2. The student must complete a minimum of two hours of electives.
 Available Electives (semester hours in parenthesis)
 - Principles of Magnetic Resonance Imaging (2)
 - Physics of Position Emission Tomography (2)
Special Radiation Treatment Procedures (2)
Fundamental Biological Principles of Molecular Imaging & Therapeutics (4)
Various Medical Physics Special Project Courses (2 each)
Other electives from the GSBS, Rice University, or the University of Houston

MS Thesis

A thesis of a quality sufficient for the work to be publishable in a refereed journal is required. The student is admitted to candidacy upon approval by the Program and the GSBS Academic Standards Committee of the planned program of coursework, the abstract of the proposed research, and a list of proposed members of the Advisory Committee, by the Program and the GSBS Academic Standards Committee. The student must be admitted to candidacy before receiving credit for the first semester of Thesis. The student must register for Thesis credit for at least one semester. The MS thesis is considered complete when the final written version is signed by all members of the student’s Advisory Committee and after the student has presented a public seminar and passed an oral examination on the thesis by the members of the Advisory Committee and other interested faculty. The student is expected to submit at least one manuscript based on the thesis work to an appropriate peer-reviewed scholarly journal.

Clinical Rotations

The student must complete two clinical rotations of 200-300 contact hours’ duration each:
- Radiation Therapy Physics Rotation (4)
- Diagnostic Imaging Physics Rotation (4)

Optional Supplementary Training

SMS students may receive additional, supplementary training by taking short courses in Therapeutic Radiological Physics offered by the MD Anderson Cancer Center Department of Radiation Physics, or Imaging Physics offered by MD Anderson’s Department of Imaging Physics. Formal credit is not awarded for these courses and they are not required for graduation. Students may enroll through the Program Manager for Education, MD Anderson Cancer Center, Department of Imaging Physics.

Prerequisites

A bachelor’s degree in physics or in another basic science or in engineering with the equivalent of a minor in physics is required. The physics background may be demonstrated by completion of upper-level courses in atomic and nuclear physics, electromagnetism, quantum mechanics, classical mechanics, and thermodynamics. Additional requirements are calculus and differential equations. A year of chemistry and a semester of biology are highly desirable. Applicants are expected to have a grade point average of at least 3.0 on a scale of 4.0 on all undergraduate and graduate level work taken previously, particularly in the prerequisite areas.

The General Test of the Graduate Record Examinations is required; the specialty test in physics is optional, but could be of benefit to the applicant. Foreign nationals whose native language is not English and who have not attended an English-speaking university must take the Test of English as a Foreign Language (TOEFL).

Further information may be obtained by writing to:
Non-Degree Study

Qualified individuals who hold a bachelor’s degree in science, have a demonstrated interest in a career in research, and wish to take courses at the graduate level without enrolling in an MS or PhD degree program may be admitted to the School as non-degree students. No commitment to eventual admission to a degree program is implied by admission as a non-degree student. Non-degree students will pay regular (per credit) tuition and will receive transcripts indicating the appropriate grades and credit for work completed. Non-degree students will not be eligible for School-based or sponsored financial aid, but may be eligible for other types of financial aid from UTHealth. Further information about non-degree study is included in the section on admission.

RESOURCES FOR GRADUATE EDUCATION

By virtue of its location in the Texas Medical Center and the excellence of its distinguished faculty, the School affords qualified students extraordinary opportunities for basic and clinical research. Didactic teaching and training activities are conducted in lecture rooms and laboratories of component UT institutions where faculty members hold their primary academic appointments. In addition to the resources available within UT institutions, cooperative arrangements with Baylor College of Medicine, Rice University, Texas Woman’s University, the University of Houston and the Gulf Coast Consortium provide GSBS students excellent opportunities for developing educational and research programs appropriate to their academic backgrounds and future career interests.

Excellent library facilities are available to provide resource material for course work and research. Students have access to the Texas Medical Center Library (see general information) as well as the specialized GSBS, School of Dentistry, School of Public Health, and MD Anderson libraries. The Houston Public Library, Rice University (Fondren) Library, University of Houston MD Anderson Memorial Library, and numerous private library facilities also are available for use.

GSBS students have access to a wide range of computing hardware, from laptops to supercomputers, and to a vast array of computer software and services. Within the School itself is a computing facility that includes a variety of desktop computers and printers. The Information Technology Access fee gives students remote access to the Internet and electronic resources of the University, subject to all UTHealth policies governing such access. The TMC Library provides access to approximately 8,000 online journals, 16,000 e-books and 300 databases, supporting the Texas Medical Center’s academic institutions in particular, including the academic and research programs of GSBS. Students may connect to the library at http://www.library.tmc.edu to register for free online access accounts. Access to computing systems in the Texas Medical Center and to the UT System supercomputer at Austin is provided via the Internet.
ADMISSION

Admissions Statement

The mission of The University of Texas Graduate School of Biomedical Sciences at Houston (GSBS) is to train and educate research scientists and scientist-educators, to generate new knowledge in the biomedical sciences and to increase public understanding of the biomedical sciences.

The GSBS strives for diversity in the student population to enrich the overall educational experience for all students. All applicants will be evaluated holistically according to criteria outlined below.

Applicants for the PhD Degree Program

Applicants must have a bachelor’s degree or its equivalent from an accredited institution. A solid background in the basic sciences is recommended and this background may typically include:

Biology - a minimum of two semesters (including a course in introductory biology)

Biochemistry - a minimum of one semester (with prerequisite organic chemistry)

Calculus - a minimum of one semester

Physics - a minimum of two semesters

The applicant should review the website of the Program in which he/she has an interest for a listing of the undergraduate coursework recommended by the Program. The Admissions Committee will examine an applicant’s educational history in order to ascertain the applicant’s preparation for entry into graduate school. An MS degree is not required for admission to the PhD program. Once an admitted student forms an approved Advisory Committee, this Committee will review the student’s undergraduate coursework, and, upon consideration of the student’s research focus, make recommendations for any remedial work that would facilitate the successful completion of the dissertation research.

Applicants are expected to have a grade point average of at least 3.0 on a scale of 4.0 on all undergraduate and graduate level work taken previously (particularly in the recommended coursework listed above). The average undergraduate GPA of students entering the PhD program in recent years has been 3.5.

Applicants are required to take the General Test of the Graduate Record Examinations. A Subject Test is not required, but is strongly encouraged. The average GRE score (Verbal + Quantitative scores) of students entering the PhD program in recent years has been 317; this score is for the GRE exam for applicants entering GSBS in Fall 2015.

A student who is initially admitted to the GSBS MS degree program may not submit an application to the PhD degree program prior to the completion of most or all of the research required for the M.S degree. A student in a GSBS MS program may not matriculate into a GSBS PhD program until the MS degree has been awarded.
Applicants may submit only one application per year for a particular degree program. If an application is rejected, the applicant may reapply to that degree program after one calendar year. In this case, the applicant is expected to complete a new application for admission and supply any additional materials to update their application.

Applicants for the MS Degree Program

Applicants for MS degree programs will be evaluated holistically according to factors outlined below. Students enrolling in MS programs in recent years have had an average GRE score (Verbal + Quantitative) of 316, and an average undergraduate GPA of 3.5.

Factors Considered in Admissions Decisions

The GSBS Admissions Committee may consider the following factors in evaluating applicants for admission:

• Previous research experience and accomplishments, including participation in science fairs, enrollment in laboratory and research-based courses, and involvement in research projects, presentations of research findings and publications;
• Expressed commitment to a career involving biomedical research;
• Undergraduate grade point average;
• Performance in undergraduate courses in the biological and physical sciences and mathematics;
• Trends in academic performance;
• Degree of difficulty of undergraduate academic program;
• Previous graduate-level study;
• Honors and awards for academic achievement;
• Performance on the Graduate Record Examination and GRE Subject Test (and for international applicants, the Test of English as a Foreign Language (TOEFL)).
• Success in overcoming socio-economic and educational disadvantages;
• Multilingual proficiency;
• Region of residence;
• Non-academic responsibilities, such as employment and child-rearing;
• Involvement in community activities; and
• Race and/or ethnicity.

Application Procedures

Applications must be submitted electronically. A link to the online application form can be found in the Admissions section of the GSBS website. Applications are reviewed for the Fall semester only.

All components of the application must be submitted electronically for both domestic and international applicants. Please note that there is no need to submit official transcripts or test scores as part of the preliminary application process. This information will be self-reported by the applicant. Copies of transcripts and test scores are to be uploaded into the application system.
• Online application form
• Unofficial transcripts - An unofficial copy of the transcript from each college and university attended is required.
• GRE scores – GRE scores must be available at the time of application. The applicant will upload a copy of the ETS score report. Scores must be from an exam taken within the last 5 years.
• TOEFL scores (International applicants) – The applicant will upload a copy of the ETS score report.
• Application fee - A $30 application fee is required.
• CV/Resume - A CV or resume is required and should include academic honors, awards received in college, employment history, internships, summer research programs, education history, etc.
• Personal statement - The personal statement should be 1-2 pages in length and should be a discussion of the applicant’s motivation and rationale for pursuing a graduate degree. The statement should specifically address objectives in seeking advanced education, professional goals, areas of study in which the applicant wishes to specialize, reasons for seeking admission to GSBS, and how the applicant’s professional goals may be met in the GSBS.
• Research statement – Students must describe their research background and experience relevant to their application to GSBS.
• Presentation and publications listing with abstracts – List of all publications. List the full citation giving the abstract for each in chronological order. For presentations (poster and oral presentations), indicate the type of presentation, the forum in which the presentation was made, the date of the presentation and the abstract.
• Optional Essay - A brief statement detailing any disadvantages (e.g., socioeconomic, educational) the applicant has overcome.
• Three letters of recommendation - Three letters of recommendation are required to be submitted via the online system by persons well-qualified to evaluate the applicant’s scholastic performance, scientific ability, research interests and motivation, and personal attributes such as character and personality; contact information must also be provided. If the applicant is currently enrolled, or has completed a graduate program, one of the recommendations must be from the applicant’s academic advisor or mentor.

Personal interviews may be requested by the School’s Admissions Committee and all admitted applicants must be interviewed by GSBS faculty. Final admission requires receipt of official transcript and ETS score report documents, and is contingent upon a satisfactory completion of the criminal background check.

Special Information for Foreign and Non-English-Speaking Applicants

Applicants who are not U.S. citizens or permanent residents, and who have not obtained a bachelors or masters degree from a U.S. school will submit the same application described above, but will apply as an international candidate.

The Test of English as a Foreign Language (TOEFL) is administered in foreign countries by the Educational Testing Service and used as a measure of the applicant’s level of proficiency in English at the time of application. These tests are required of all foreign nationals whose native
language is not English and who have not attended an English-speaking university.

All international students who are admitted to the Graduate School and who do not have a degree from an English-speaking institution will be required to take a diagnostic English language skills test administered in GSBS before the start of Fall semester classes. The test will evaluate the student’s ability in the areas of listening and speaking, reading and writing, and grammar and vocabulary. Admitted students that demonstrate English skills thought to be inadequate for successful performance in GSBS will be required to take and pass an English language skills course during the first year at GSBS. This course will be specified by GSBS.

Application Deadline

Complete applications, containing all application materials, must be submitted by a specific deadline which is posted on the GSBS website in the Admissions section.

Essential Skills for Biomedical Scientists

To be successful as biomedical scientists, individuals must possess necessary cognitive, motor, and sensory skills. These include cognitive abilities in creative problem-solving, quantitative methods, and the objective analysis and interpretation of data. Additionally, biomedical scientists normally require fine motor dexterity, physical strength, and coordination. In order to observe and report biological phenomena effectively, scientists must possess sufficient vision and hearing and must be able to effectively write, speak and comprehend English.

Enrollment of Graduate Students from Affiliated Institutions

Through reciprocal agreements, students at other components of The University of Texas System, as well as graduate students from Rice University, Baylor College of Medicine, Texas Woman’s University, the University of Houston, Texas A&M Health Science Center-Institute of Biosciences and Technology, and the Gulf Coast Consortium may take graduate courses for credit at the School, subject to the approval of the instructor. In addition, GSBS students may take courses for credit at any of the above institutions. The mechanisms for payment of tuition and registration fees vary according to the individual institution. Consult with the Office of the Registrar for specific details.

Non-Degree Students

Application to be a non-degree student requires submission of an application form, a statement of intention including a proposed course of study, official transcript(s), and three letters of recommendation. The deadline to apply as a non-degree student is two months prior to the start of the semester.

A non-degree student will be admitted for one year. No commitment to eventual admission to a degree program is implied by admission as a non-degree student. Re-admission for additional periods of study as a non-degree student will be considered by the Dean, and is dependent in part on the student maintaining at least a 3.0/4.0 grade point average in GSBS courses. Application for re-admission requires a written statement by the applicant reviewing past performance and future goals.
Employees

Employees of institutions within the Texas Medical Center may, with consent of the instructor and the employee’s supervisor, and with permission of the Dean, register for one GSBS course each semester. Registration forms for this purpose are available from the Office of the Registrar. Employees must submit an official transcript from their undergraduate institution verifying that they have earned a bachelor’s degree or the equivalent prior to enrollment.

Guidelines for Employees Who Wish to Pursue a PhD Degree

Any employee of an institution in the Texas Medical Center may, with consent of the instructor and the employee’s supervisor, and with permission of the Dean, register for one GSBS course each semester. The employee may register for up to two courses with permission of the Dean. If the employee is eventually admitted to the School, courses taken while an employee will appear on the student’s transcript and may be used to meet GSBS degree requirements, with the approval of the student’s Advisory Committee and the Academic Standards Committee.

One of the courses an employee may take is a laboratory research tutorial. To do so, the employee must register for the GSBS course entitled Special Project: Research (GS001530). This course must simulate, in its requirements, the GSBS course entitled Tutorial Research Experience (GS001514), i.e., it should represent a real learning experience in the laboratory of a GSBS faculty member (and not the activity of a laboratory technician). A minimum of 200 hours of effort are required for the two-credit hour tutorial/Special Project, generally a minimum of 20 hours per week. Employees do not need to complete their didactic coursework before registering for Special Project: Research (GS001530).

If the employee is admitted to a GSBS PhD program, one of these tutorial-like Special Projects may be used to fulfill one tutorial requirement of the PhD degree. Each of the three tutorial rotations required for the PhD must be performed under the guidance of a different GSBS faculty member, and at least one tutorial must be conducted while the student is registered full-time in the PhD program. However, one of the three required tutorials may be waived by the Dean of Academic Affairs if the student enters GSBS with an MS degree that involved laboratory-based research and a thesis, or with other appropriate research experience, such as experience resulting in publications.

Upon admission to the PhD program, the employee must become a full-time graduate student. The student’s financial support will be in the form of a Graduate Research Assistantship at the standard GSBS level (currently $29,000 per annum). Exceptions to this policy may be granted with approval from the GSBS Dean.

FINANCIAL SUPPORT

It is the expectation of the GSBS that each student in the PhD program be supported by a graduate research assistantship (GRA) or by a fellowship/traineeship. Funding of the GRA is contingent upon maintaining good academic standing and satisfactory progress towards degree completion. The award of a GRA includes:

- A stipend of $29,000 per annum;
- Payment of the student’s GSBS tuition and required fees; and
- Health insurance
Stipends awarded to GSBS students are intended to assist in meeting educational and living costs so that students can devote full time to their studies. It is the expectation of the School that PhD students holding a GRA will not undertake activities, including employment of any kind (beyond the types of financial support employment described in this section) that will interfere with their educational program or delay their progress toward the degree. An exception to this policy will be made by the Dean only if the activity proposed by the student can be justified as contributing in some fashion to the student’s training as a researcher/teacher.

No PhD student may hold more than one training position at a time. That is, PhD students hold the Graduate Research Assistant (GRA) training position during their tenure as graduate students, and may not hold other training positions (e.g., post-doctoral fellow) concurrently with the GRA position.

Students who are awarded approved, competitive, external Fellowships are eligible, at their advisor’s discretion, to be supplemented up to 130% of the standard GSBS graduate research assistantship. To qualify, the fellowship must be made explicitly under the student’s name.

Graduate School assistantships normally are not awarded to students in the individualized or specialized MS degree programs, although financial aid may be available from individual faculty members or the specialized MS programs. Students in MS programs are eligible to receive a stipend (not to exceed the current GRA level) for the duration of their degree training. MS students who do not receive Graduate Research Assistant stipends may pursue outside employment. If a student is employed in the laboratory in which the student is also performing MS thesis work, experiments performed and data generated in the normal work associated with employment may not be included in the MS thesis.

All degree students may be eligible for the many endowed scholarships and fellowships that are administered by the Deans’ Office. The scholarships and fellowships are awarded on a competitive basis by the Student Scholarship Committee using criteria specific to each award. Factors taken into consideration include the student’s academic performance, research progress and faculty recommendations. Applications are solicited from students twice a year using a common application. GSBS also provides travel awards to help students defray the costs of attending scientific meetings. Further information may be obtained from the GSBS website or the Office of Academic Affairs.

The School maintains a list of active institutional training grants and can assist students in preparing applications for external fellowships and awards. More information can be found on the GSBS website under the Training Grant Navigator Program.

In addition to the types of financial aid mentioned above, other sources of support are available through UTHealth’s Office of Student Financial Services (see General Information Catalog).

FEES AND EXPENSES

Tuition for Fall and Spring Semesters

Texas law provides for exemption from or the waiver of tuition and/or fees for students under certain conditions. For specific information, contact the Office of the Registrar. Under Texas law, UTHealth may charge a resident doctoral student who has in excess of 100 credit hours, tuition at the rate charged non-resident doctoral students. For specific information, contact the Office of the Registrar.
Resident tuition is $182 per semester credit hour. Non-resident tuition is $500 per semester credit hour. Tuition and fees are subject to change by legislative or Regental action and become effective on the date enacted. The student fees assessed are authorized by state statute; however, the specific fee amounts and the determination to increase fees are made by the university administration and The University of Texas System Board of Regents. Tuition for residents is at a semester credit hour rate without a minimum.

To maintain full-time student status, a student must register for at least 9 credit hours of GSBS coursework in the Fall and Spring semesters.

Tuition for Summer Sessions

Resident tuition is $182 per semester credit hour. If students register for additional courses during the second summer term, tuition and fees will be automatically adjusted.

To maintain full-time student status, a student must register for at least 6 credit hours of GSBS coursework in the Summer semester.

Fees and Charges

Student fees are authorized by state statute; however, specific fee amounts and the determination to increase fees are made by UTHealth administration and The University of Texas System Board of Regents. Please see the website of the Office of the Registrar at https://www.uth.edu/registrar/ for information on fees.

GENERAL REGULATIONS

Following is a summary of general School regulations. Complete and specific regulations and requirements are included in the School's Policies and Procedures available on the GSBS website, developed under the auspices of the Academic Standards Committee. The provisions that apply to a particular student are those in the School Catalog and the UTHealth General Information Catalog (hard copy or web version) and GSBS Policies and Procedures in effect at the time the student is admitted to a GSBS degree program. However, the student may choose to be guided by the provisions of the Catalog and GSBS Policies and Procedures of any subsequent year in which he or she is in residence.

Degree Requirements

The general requirements for the PhD and MS degrees are described in previous sections of this Catalog. The specific requirements for the degrees and the timetable for meeting the requirements are presented in the School Policies and Procedures.

All research papers, theses, and dissertations authored by degree candidates are available to interested members of the general public upon request.

Registration

Full-time students must be registered for each term (Fall, Spring, Summer) of the academic year unless approved for an official leave of absence. Students who are not registered for a term or on an approved leave of absence are considered to have withdrawn from school. Once having withdrawn, a student who wishes to continue formal studies must apply and be readmitted to
the GSBS. A student must be enrolled through the semester in which he or she completes all requirements for graduation.

Transfer Credit

No record of courses taken at other institutions prior to admission to the School will appear on a student's GSBS transcript. However, with approval from the Academic Standards Committee and the Dean of Academic Affairs, students who entered GSBS may transfer credit from previous graduate work at another accredited institution provided the credit was not earned toward a completed degree or certificate program. Transfer credits cannot exceed in number those earned in GSBS coursework toward any degree. For the Program of Work that a student submits in the petition for admission to candidacy for the MS degree, a maximum of two courses taken elsewhere may be included and counted toward the credit hour minimum for degree. Particular courses taken at the graduate level at another institution, if approved by the Dean of Academic Affairs, may be considered as meeting individual degree requirements.

Grading System

Graduate students must be assigned letter grades (A, B, C, F) for completion of formal courses listed in the GSBS Catalog. For computation of the GPA: A = 4, B = 3, C = 2, and F = 0.

A grade received in an approved course taken at another institution will be recorded as submitted by the institution but will not be calculated in the GSBS GPA unless the course is cross-listed as a GSBS course.

Literature Surveys, Special Project: Research, Seminars, The Ethical Dimensions of the Biomedical Sciences, Tutorials, and other research courses listed in the School Catalog are assigned grades of Pass (P) or Fail (F). A grade of P will not be included in the computation of a student's GPA.

For Special Project: Course, the instructor may assign either a letter grade (A, B, C, F) or a Pass/Fail grade. However, the grading system must be the same for all students in the course. A letter grade will be included in the computation of a student's GPA; a grade of P will not.

Thesis for Master of Science and Dissertation for Doctor of Philosophy will be listed as Pass (indicating sufficient progress) or Fail.

A grade of Incomplete (I) may be issued by the Course Director whenever a student is unable to complete all course requirements by the end of the semester due to unavoidable circumstances. The grade of Incomplete cannot be given for poor performance or for the purpose of avoiding the issuance of a regular grade to a student who has performed poorly. Before the end of the following semester, the student must turn in the required work for a regular grade. In instances where unavoidable circumstances prevent the student from completing the work in the following semester, the student may apply for an extension of the Incomplete until the next time the course is offered. Such extensions must be approved by both the Course Director and the GSBS Office of Academic Affairs.

The symbol WP is given when a student with satisfactory course performance withdraws from a course within the first nine weeks of class with the consent of the instructor. A WP, by itself, will not prevent the student from withdrawing from GSBS in good standing. The symbol WF is given if the student has unsatisfactory course performance up to the date of withdrawal. A WF
grade is equivalent to an F in the calculation of the GPA. There will be no withdrawal after the last day of the ninth week of class.

A failing grade in any course taken while a student at GSBS is grounds for dismissal from GSBS. The student may request that the Dean allow him or her to retake the course the next time it is offered (usually within one year) rather than being subject to dismissal. If the request is granted, the student must earn a grade of A or B in that course; a grade of C when the course is retaken will result automatically in dismissal. During the interim, the student will be on academic probation. If the student passes the course, the F will remain on the transcript, but only the new grade will be calculated in the student’s GPA.

Students may retake a GSBS course, in which case both the new and previous grades will appear on the transcript but only the second grade will be calculated in the GPA. Students whose GPA is less than 3.0 may not retake courses in which they received a B in an effort to raise their GPA to 3.0 or above.

Grade Grievance Procedure

In attempting to resolve any student grievance regarding grades or evaluations, it is the obligation of the student first to make a good faith effort to resolve the matter with the faculty member involved. Individual faculty members retain primary responsibility for assigning grades and evaluations. The faculty member’s judgment is final unless compelling evidence suggests differential treatment or mistake. If the evidence warrants appeal, the student must submit a request in writing with supporting evidence to the Dean. The determination of the Dean is final.

Probation

Causes — Any of the following actions or conditions can cause the student to be placed on academic probation by the Dean:

- Failure of any course;
- Failure to maintain a School cumulative grade point average of 3.0 or better;
- Failure to meet with his or her Advisory Committee within a six-month period;
- Failure to meet the particular requirements for the MS or PhD degree in the time periods specified by the School; or,
- Failure to make satisfactory progress toward the degree.

Consquences — Any student on probation will not be allowed to stand for the MS final oral thesis examination, petition for the PhD candidacy examination, or stand for the defense of the PhD dissertation.

- More severe actions, up to and including dismissal, may be considered by the Academic Standards Committee for a student’s failure to make satisfactory progress toward the degree.

Dismissal

Causes — The following list describes the most common conditions or circumstances in which the Dean may dismiss a student from the Graduate School:
• If the student fails any course; or
• If the student’s academic deficiencies are not resolved within the time period specified in policy or by the Dean; or
• A student displays substantial deficiencies in his or her ability to perform effectively in a laboratory, or other research or training environment (as determined by one or more GSBS faculty members); or
• If the student fails the PhD candidacy examination.

Procedures – The Academic Standards Committee will consider any questions concerning a student's academic progress in which dismissal is a possible outcome, and will make the decision concerning the dismissal of the student. If the student wishes to appeal the decision of the Academic Standards Committee, he or she may appeal to the Dean, who will consider the evidence and the decision of the Academic Standards Committee and render a decision on the appeal. The Dean’s decision is final.

Student Conduct and Discipline

Students are responsible for knowledge of and compliance with University policies concerning student conduct and discipline as set forth in UTHealth HOOP Policy 186, Student Conduct and Discipline. The GSBS Code of Conduct pledge must be signed by all students in School degree programs when they first enroll in GSBS and when they petition for MS and PhD candidacy.

Leaves of Absence, Time Away from Duties, and Withdrawals

The GSBS allows students to request an official Leave of Absence (LOA) for up to one year. During an official LOA, the student cannot be paid by the advisor or the School, but may work at outside employment. Students may request an official LOA from the Office of Academic Affairs. Students must state a date when they will return from LOA. If they do not return by that date, and they have not been granted an extension of the LOA, they will be considered to have withdrawn from the GSBS.

Students may return prior to the date indicated on the LOA form. Students returning from LOA do not need to re-apply for admission, but they must notify the Office of Academic Affairs that they are returning at least 30 days prior to the semester in which they wish to re-enroll. Extensions of the official LOA for a maximum of up to one additional year may be requested through the Office of Academic Affairs, and must have the approval of the Dean. Requests for extensions must be submitted at least six weeks before the end of the initial leave.

Any student who fails to register for any semester and who has not been granted an official leave of absence or been approved as a non-registered candidate for a degree will be considered to have withdrawn from the School. Once having withdrawn, a student who wishes to continue formal studies must apply and be readmitted to the School.

Time Away from the Lab

Students receive their stipends as employees from one of the GSBS parent institutions, each of which has its own employment policies and procedures with which the student must comply. UTHealth and MD Anderson Cancer Center each has its own policies on several issues, such as the amount of time graduate students are permitted to be away from their lab or workplace for purposes such as sick leave, vacation, family-related leave, etc., and the policy of the institution...
at which the student is employed shall apply. In all cases, however, the student should remember that he/she is employed by the advisor, and the advisor sets the standards for work ethic and policies of the lab, including attendance standards and expectations. The student and advisor should always explicitly discuss the advisor’s expectations before they make a mutual commitment. In all cases, it is the student’s responsibility to request time away from the lab (or expected lab activities; in advance, when possible) and to keep the advisor, or the advisor’s designee, informed in a timely manner of any unanticipated absences, e.g., for illness, family emergencies, etc.

GSBS STUDENT GROUPS

Association of Minority Biomedical Researchers

The Association of Minority Biomedical Researchers (AMBR) supports students by offering valuable academic resources during their graduate education. AMBR hosts professional development events that address the specific needs of graduate trainees. This student-led group is dedicated to enriching scientific training through a community of solidarity and support.

First Generation

The First Generation group is a community of graduate students who are the first generation in their family to obtain a degree. This supportive peer community is focused on connecting students with a range of professional development and personal resources to enhance the graduate school experience and support student success. The group meets monthly with an agenda driven entirely by student interests that includes seminars/workshops, mentoring opportunities, and career discussions with senior scientists across diverse fields.

Graduate Student Association

The purpose of the Graduate Student Association (GSA) is to provide a student forum for discussion of common needs. The group works cooperatively with faculty and administration to address issues important to the student body. To enhance communication, each academic Program provides one student representative that acts as a conduit between the student body, GSA officers and the GSBS administration. This committee helps the GSA officers organize and plan events, gathers comprehensive feedback from the students, and provides an opportunity for more students to get involved with the GSA.

Community Outreach

Community Outreach is a volunteer student program that organizes events to raise science literacy and enthusiasm for science in our community. It helps plan lab tours, career seminars, research talks, science fairs, and much more at the GSBS and at local schools. The main goal of Community Outreach is to enhance scientific literacy and an appreciation of the scientific method in the community.

LGBT Student Alliance

The LGBT Student Alliance aims to promote a sense of community among its members as well as an awareness of issues affecting the LGBT community in the graduate school. The group sponsors regular social events to promote networking, takes part in community service events and hosts educational workshops.
COURSE OFFERINGS OF THE GENERAL FACULTY

GS00 1020 Practicum in Teaching.
Variable credit
All semesters, annually. Prerequisite: none. Swindell, Eric. This course is for the GSBS student who is appointed as a teaching assistant through the GSBS and provides for the student a record of that appointment.

GS00 1021 Special Project Internship.
1 sem. hr.
All semesters annually. Prerequisite: By permission of instructor only. Bean, Andrew. All GSBS students who plan to carry out an internship outside the school are required to register for this class. Interested students should contact the instructor at least two months in advance to make specific arrangements.

GS00 1514 Tutorial Research Experience.
2 sem. hrs.
Graduate Faculty. All semesters, annually. Enrollment is required of all PhD students during the first two semesters of residence. Not open to MS or non-degree students. During each ten-week rotation, students will spend the equivalent of five afternoons per week in the laboratory (20 hours per week for 10 weeks for a total of 200 hours). In consultation with their faculty advisors, students will select the research areas that best support their educational programs.

GS00 1520 Research in Biomedical Sciences.
Variable credit
Graduate Faculty. All semesters, annually. Primarily intended for MS and PhD students who have selected their advisors and thesis projects.

GS00 1530 Special Project: Research.
Variable credit
Graduate Faculty. Maximum of 4 sem. hrs. All semesters, annually. Short-term research project intended to expose students to a research area or set of laboratory techniques. May be used by MS or non-degree students to obtain the equivalent of a Tutorial Research Experience.

GS00 1610 Special Project: Course.
Variable credit
Graduate Faculty. All semesters, annually. For courses not listed in the GSBS Catalog or courses presented in a different format from that listed in the Catalog.

GS00 1620 Literature Survey.
Variable credit
Graduate Faculty. Maximum of 2 sem. hrs. All semesters, annually.

GS00 1910 Thesis for Master of Science.
Variable credit
Graduate Faculty. All semesters, annually. For students who have successfully petitioned for MS candidacy. Enrollment for a minimum of one semester required for MS degree.

GS00 1920 Dissertation for Doctor of Philosophy.
Variable credit
Graduate Faculty. All semesters, annually. For students who have passed the PhD oral candidacy examination. Enrollment for a minimum of one semester required for PhD degree.
COURSE OFFERINGS IN BIOSTATISTICS, BIOINFORMATICS AND SYSTEMS BIOLOGY

GS01 1013 Bayesian Data Analysis. 3 sem. hrs.
Fall, annually. Prerequisite: Calculus, linear algebra, prior probability and statistics course (or permission of instructor). Baladandayuthapani, Veera. This course will cover Bayesian methods for analyzing data. The emphasis will be on applied data analysis rather than theoretical development. A variety of models, including linear regression, hierarchical models, and models for categorical data will be considered.

GS01 1023 Survival Analysis. 3 sem. hrs.
Spring, odd-numbered years. Prerequisite: Introduction to Biostatistics and Clinical Trials (GS011033), or permission of instructor. Shen, Yu. Survival data are commonly encountered in scientific investigations, especially in clinical trials and epidemiologic studies. In this course, commonly used statistical methods for the analysis of failure-time data will be discussed. One of the primary topics is the estimation of survival function based on censored data, which include parametric failure-time models, and nonparametric Kaplan-Meier estimates of the survival distribution. Estimation of the cumulative hazard function and the context of hypothesis testing for survival data will be covered. These tests include the log rank test, generalized log-rank tests, and some non-ranked based test statistics. Regression analysis for censored survival data is the most applicable to clinical trials and applied work. The Cox proportional hazard mode, additive risk model, other alternative modeling techniques, and new theoretical and methodological advances in survival analysis will be discussed.

GS01 1033 Introduction to Biostatistics and Clinical Trials. 3 sem. hrs.
Spring, annually. Prerequisite: Calculus and linear algebra. Yuan, Ying; Liu, Suyu. This course is a one-semester overview of statistical concepts most often used in the design and analysis of biomedical studies. It provides an introduction to the analysis of biomedical and epidemiological data. The focus is on non-model-based solutions to one sample and two sample problems. The course also includes an overview of statistical genetics and bioinformatics concepts. Because this course is primarily for statistics majors, the applied methods will be related to theory wherever practical. Students will be given the opportunity to gain experience in the general approach to data analysis and in the application of appropriate statistical methods. Emphasis will be on the similarity between various forms of analysis and reporting results in terms of measures of effect or association. Emphasis will also be given to identifying statistical assumptions and performing analyses to verify these assumptions. Because effective communication is essential to effective collaboration, students will have the opportunity to gain experience in presenting results for statistically naive readers.

GS01 1053 Linear Regression and Statistical Computing. 3 sem. hrs.
Fall, annually. Prerequisite: Introductory statistics, or permission of instructor. Shete, Sanjay. This course will cover basic linear regression analysis. Topics to be covered include simple and multiple regression, diagnostics, influence, and model construction. The emphasis will be on the practical aspects of the construction and validation of linear models. The course will include extensive samples of the use of computer software to perform such analyses. Statistical package “R” will be used primarily for these examples, although other packages will be illustrated as well. (Students will be permitted to use whatever software they prefer for class assignments.)
This course is intended as an applied introduction to regression analysis. Theoretical results will be developed and presented as necessary, but the emphasis will be on applications.

GS01 1083 Mathematical Statistics I.

Spring, annually. Prerequisite: Advanced undergraduate course in probability and statistics (300 level); probability theory and the central concepts and methods of statistics. Shete, Sanjay. A review of probability theory, including generating functions, common families of distributions, multivariate distributions, and hierarchical modeling. Foundations of statistical inference, including sampling distributions, principles of data reduction, maximum likelihood methods, point and interval estimation, hypothesis testing, and decision theory. Applications to advanced statistical problem sets. The course is cross-listed at Rice University (Stat 519). The venue of the course will be at Rice University.

GS01 1093 Mathematical Probability I.

Fall, annually. Prerequisite: Calculus, real analysis, or permission of the instructor. Shete, Sanjay. This course is the first of a two-semester sequence covering advanced concepts in mathematical probability. Students will have the opportunity to learn the measure-theoretic foundations of probability. Topics covered include sigma-fields, probability spaces, random variables, measures, measurable functions, expectation, integration, convergence theorems, product spaces, Fubini's theorem, and convergence concepts.

GS01 1113 Introduction to Mathematical Statistics.

Spring, annually. Prerequisite: Introduction to Mathematical Probability (GS011213), or permission of instructor. Shete, Sanjay. This course is the second of two courses intended to establish a theoretical foundation for the biostatistics and biomathematics curriculum. The material introduced in this course is a necessary prerequisite for GSBS courses in informatics, survival analysis, and advanced Bayesian inference. The focus will be on integrating both classical and Bayesian methods in a comprehensive but elementary survey. This course will discuss the general approach to statistical inference for data arising from an unknown probability distribution. Students will learn methods for characterizing specific properties of the distributions and use them in making future predictions. The course will discuss statistical inferential methods for data arising from continuous or discrete distributions. The course is cross-listed at Rice University (Stat 532). The venue of the course will be at Rice University.

GS01 1133 Statistical Methods in Bioinformatics.

Fall, annually. Prerequisite: Introduction to Mathematical Statistics (GS011113) or consent of instructor. Liu, Yin. The objective of this course is to introduce students to the concepts and statistical methods for analyzing large-scale biological data generated from emerging genomic and proteomic techniques. The course will focus on the integration of two disciplines - biology and statistics - by first describing statistical methods most often used in the field of bioinformatics and then discussing their applications on the computational analysis of gene sequence, expression and biological interactions at a large scale. The statistical methods covered include dynamic programming, maximum likelihood estimation, Bayesian inference, Hidden Markov Models, Markov chain Monte Carlo, classification and clustering methods. The students will master advanced applications of statistical computing in a wide range of biological and biomedical problems, including multiple sequence alignment, biomarker and disease gene identification, inference of protein interaction network, functional modules and signal transduction networks.

GS01 1143 Introduction to Bioinformatics.

3 sem. hrs.
GS01 1153 Longitudinal Data Analysis.
Spring, annually. Prerequisite: Permission of instructor. Hu, Jianhua; Ning, Jing. This course presents extensions of classical generalized linear models to correlated outcome data with the specific emphasis on repeated measurements. Such models arise from designs such as longitudinal studies, which are commonly encountered in biomedical and environmental research. Major topics include mixed linear models for continuous, binomial, and count data; maximum likelihood estimation; generalized estimating equations; REML, EM algorithm; current general and specialized statistical software applicable for implementing these methods; and readings from current statistical literature. This course is intended for students with a background in basic statistical theory and linear models.

GS01 1163 Analysis of Microarray Data.
Fall, biannually. Prerequisite: Permission of instructor. Baggerly, Keith. This course is an introduction to the statistical and bioinformatic analysis of microarray data. The course covers both Affymetrix oligonucleotide arrays and two-color fluorescence cDNA microarrays. The course introduces students to the full range of processing microarray experiments, from experimental design, through image processing, background correction, normalization, and quality control, to the downstream statistical analysis of differential expression. The course includes coverage of the key statistical concept of multiple testing. The course covers common methods of pattern identification and pattern recognition in the context of microarrays. It also includes the bioinformatic interpretation of the results through tools to interact with public genome databases. All concepts will be illustrated through hands-on interaction with publicly available microarray data sets. Homework assignments will require some knowledge of statistical programming language “R.” The course will include a brief introduction to programming language R. In addition to biweekly assignments, student performance will be assessed through presentation of a final project.

GS01 1173 Modern Multivariate Statistics and Applications.
Spring, biannually, even-numbered years. Prerequisite: Permission of instructor, Introduction to Biostatistics and Clinical Trials (GS011033) and knowledge of linear algebra. To be determined. This course will provide a general overview of the current state of multivariate statistical analysis in an age of high speed computation and large datasets, mixing new algorithmic techniques for analyzing large multivariate datasets with some of the most classical multivariate techniques. The learning is integrated with examples and applications in different fields, e.g., bioinformatics, genomics, chemometrics, psychology and medical science. At the end of the course, students should be able to plan and conduct analyses on high-dimensional datasets.

GS01 1183 Mathematical Statistics II.
Fall, annually. Prerequisite: Mathematical Statistics I (GS011083). Shete, Sanjay. This course is a continuation of Mathematical Statistics I. In this semester, the course covers the foundations of statistical inference, including the theory of point and set estimation, hypothesis testing, linear models, asymptotics, decision theory, and Bayesian theory.
GS01 1203 **Advanced Bayesian Statistics.** 3 sem. hrs.

Spring, even-numbered years. Prerequisites: *Introduction to Biostatistics and Clinical Trials (GS01 1033)* and *Bayesian Data Analysis*; permission of instructor. Peterson, Christine.

This is an advanced course covering modern topics in Bayesian statistical analysis. Knowledge of basic Bayesian statistics at the level of *Introduction to Biostatistics and Clinical Trials (GS01 1013)* is assumed. The course will consist of a number of major modules. For each module, there will be introductory lectures from the instructors and then readings and class presentations/discussions from the students. The final project will be an analysis of data with models/methods covered in class. Throughout the course, familiarity with some software (R, C, C++, WinBUGS or Matlab) will be assumed. Throughout the course, models and computational methods will be introduced with emphasis on applications to real data problems. The course is cross-listed at Rice University (Stat 522). The venue of the course will be at Rice University.

GS01 1213 **Introduction to Mathematical Probability.** 3 sem. hrs.

Fall, annually. Prerequisite: Permission of instructor. To be determined. This course presents the basic ideas of probability theory in an axiomatic framework. The idea of a probability space is presented, and the idea of a random variable is given. Also included are conditioning and independence, and an introduction to Markov chains. The course also presents the idea of a function of a random variable and how to find its distribution and moments. Finally, the course presents probability distributions (discrete and continuous).

GS01 1813 **Topics in Clinical Trials.** 3 sem. hrs.

Spring, odd-numbered years. Prerequisite: Prior courses in probability and statistics, permission of the instructor. Hobbs, Brian. This course deals with fundamental concepts in the design of clinical studies ranging from early dose-finding studies (phase I) to screening studies (phase II) to randomized comparative studies (phase III). The goal is to explore the statistical issues involved in clinical trials, to introduce various clinical trial designs, and to prepare the student to read the clinical trial literature critically. Additionally, faculty will introduce newer designs for clinical studies that incorporate prior knowledge and/or satisfy optimal considerations. Topics include basic study design options, sample size calculation, randomization, trial conduct, interim monitoring, data analysis, adaptive designs, multiple endpoints, meta-analysis, decision analysis, Bayesian methods, innovative phase I and II trial designs, and writing up the results of a clinical trial for publication.

COURSE OFFERINGS IN MEDICAL PHYSICS

GS02 1011 **Radiation-Induced Late Effects and Survivorship Journal Club.** 1 sem. hr.

Spring, annually. Prerequisite: Medical Physics Program or consent of instructor. Mirkovic, Dragan. Students will meet weekly to present and discuss a contemporary publication on the subject of late effects, cancer survivorship, and dosimetry following medical radiation exposures. Publications may include scientific articles, books, reports, review papers, etc. The late effects of interest to the participants of this course are radiation-induced second cancers, infertility, organ dysfunction, cardiovascular effects, lung damage, pregnancy and neonatal outcomes, cognitive deficit, auditory impairment, dental abnormalities, diabetes, other chronic disease, and other long-term radiogenic effects and public health concerns. Medical radiation exposures include those related to radiotherapy and diagnostic imaging. Radiation dosimetry,
late effects, and survivorship publications will be based on radiological measurements, analytic calculations, Monte Carlo calculations, predictive risk models, epidemiological data, and any related studies. The presentation outline comprises 25 minutes of prepared slides and 25 minutes of discussion. Each student will be required to present at least once during the semester and will be expected to actively participate in the discussion period. A minimum of 80% attendance is required for a passing grade. Students and faculty will not present their own work. This course is intended for Medical Physics students but is open to students from other programs with instructor consent.

GS02 1012 Physics of Positron Emission Tomography. 2 sem. hrs.
Summer, biannually. Prerequisites: Radiation Detection, Instrumentation, and Data Analysis (GS021053) and Introduction to Medical Physics II: Medical Imaging (GS021093) or Introduction to Medical Physics IV: The Physics of Nuclear Medicine (GS021193). Mawlawi, Osama. This course will focus on advanced Positron Emission Tomography (PET) physical principles, image formation and processing, and image correction techniques, as well as lay the foundations for understanding tracer kinetic modeling. Students will have the opportunity to obtain hands on experience with PET imaging and data analysis. The use of PET imaging in various medical and research applications will be presented.

GS02 1014 Fundamental Biological Principles of Molecular Imaging and Therapeutics. 4 sem. hrs.
Spring, annually. Prerequisites: Consent of instructor. Millward, Steven. This course covers the biological principles that form the basis for molecular imaging and therapeutics. It is an introductory course that assumes that the student has completed at least one year of general chemistry and, preferably, at least one semester of biology. It is further assumed that the student has a firm understanding of calculus and ordinary differential equations. Topics covered include the fundamental aspects of biochemistry, cell biology, and cancer biology needed to appreciate and understand critical concepts in the applications of modern molecular imaging and therapeutics. Applications and examples of key concepts to molecular imaging and/or therapeutics are provided throughout the course. The course is designed for students in the Medical Physics Program, but is also open to students in other programs who are in need of an introduction to molecular and cellular biology.

GS02 1022 Special Radiation Treatment Procedures. 2 sem. hrs.
Summer, annually. Prerequisite: Introduction to Medical Physics I (GS021093), Introduction to Medical Physics III: Therapy (GS021113), and Introductory Radiation Therapy Physics Rotation (GS021154). Court, Laurence. The main goal of this course is to introduce students to special radiation therapy and image-guided therapy procedures that are considered “non-routine” or in “advanced” form relative to the current clinical practice and may require special consideration in the preparation and execution. Special procedures are important clinical services which are usually provided directly by the clinical medical physicist. The special procedures selected in this course may change overtime. Currently, the following topics are included: image-guided radiotherapy procedures; total skin and total body irradiation techniques; fetal and pacemaker dosimetry; commissioning of IMRT planning systems; 4D CT imaging procedures; CyberKnife treatments; and tomotherapy treatment techniques.

GS02 1032 Principles of Magnetic Resonance Imaging. 2 sem. hrs.
Summer, odd-numbered years. Prerequisite: Introduction to Medical Physics II (GS021103) or consent of instructor. To be determined. The goal of this course is to provide a comprehensive
understanding of the physics involved in magnetic resonance imaging (MRI), and prepare the
students to carry out research or practice medical physics in this area. The topics include
basic spin physics, contrast mechanisms, hardware, data acquisition, image reconstruction,
and artifact recognition. Emphasis will be placed on practical issues encountered in research
and clinical applications.

GS02 1042 Radiation Biology.
2 sem. hrs.

Fall, annually. Prerequisite: Permission of instructor and student must have already completed
and passed *Introduction to Medical Physics I (GS021093)*. Ibbott, Geoffrey; Followill, David. This
course will cover the fundamentals of radiation biology for graduate students of biophysics,
radiation biology or medical physics.

GS02 1053 Radiation Detection, Instrumentation, and Data Analysis.
3 sem. hrs.

Spring, annually. Prerequisite: *Introduction to Medical Physics I (GS021093)* or equivalent, and
permission of instructor. Kry, Stephen. This course encompasses a study of the characteristics
and applications of charged particle, photon, and neutron detectors. Modular analog and digital
electronics required for signal processing and data recording will be used. Techniques of data
analysis and error propagation of counting statistics will be introduced. The course will include
two lectures and one laboratory exercise weekly. The applications of radiation detectors in
radiotherapy, health physics, nuclear medicine, and radiobiology will be emphasized.

GS02 1093 Introduction to Medical Physics I: Basic Interactions.
3 sem. hrs.

Fall, annually. Prerequisite: Permission of instructor. Starkschall, George. This semester covers
the basic interactions of ionizing and non-ionizing radiation important in medicine. Topics
include production of radiation; photon, charged-particle, and neutron interactions; cavity
theory; radiation interactions with solids; and ultrasound interactions.

GS02 1103 Introduction to Medical Physics II: Medical Imaging.
3 sem. hrs.

Spring, annually. Prerequisite: *Introduction to Medical Physics I (GS021093)*. Rong, John.
This course includes the production of x-rays, conventional x-ray radiology, fluoroscopy,
mammography as well as digital x-ray imaging modalities, computed tomography, ultrasound
and picture archiving and communication systems (PACS). It covers the basic principles of
medical imaging physics, the fundamental characteristics of each imaging modality, the major
components of medical imaging systems, the principles of image formation and reconstruction,
the attributes used to assess the performance and image quality of an imaging system, and the
radiation dose to patients and personnel.

GS02 1113 Introduction to Medical Physics III: Therapy.
3 sem. hrs.

Spring, annually. Prerequisite: *Introduction to Medical Physics I (GS021093)*. Salehpour,
Mohammad.

The physics of treatment modalities to include external beam radiotherapy, brachytherapy,
and internal emitters will be discussed. The necessary therapy equipment will be described
with methods of calibration, dose specification, and dose prescription. The effects of machine
geometry and patient anatomy on dose calculations will be discussed. Machine calibration and
quality assurance procedures are emphasized.

GS02 1133 Introduction to Radiation Protection.
3 sem. hrs.

Summer, annually. Prerequisite: *Radiation Detection, Instrumentation, and Data Analysis*
The science of radiation protection including terminology, biological effects, shielding dose limits, and dose measurement will be studied. The role of state and federal enforcement agencies will be discussed. The application of radiation protective concepts in a medical environment will include room design, isotope handling, instrumentation calibration, and room surveys.

GSO2 1142 Anatomy and Oncology for Medical Physicists. 2 sem. hrs.
Fall, annually. Prerequisite: None. Jones, A. Kyle. The course provides an introduction to medical terminology and concepts in anatomy, physiology, radiology, oncology, and treatment for the medical physicist. Radiologic anatomy of the head and neck, thorax, abdomen, and pelvis is taught in order to understand imaging and the treatment of cancer in these regions.

GSO2 1154 Introductory Radiation Therapy Physics Rotation. 4 sem. hrs.
Fall and Spring, annually. Prerequisite: Introduction to Medical Physics III (GSO21113) or permission of instructor. Yang, James. This course provides the student the opportunity to obtain first clinical exposure to radiotherapy. The student will observe and participate in dosimetry clinics and be asked to perform routine duties in dosimetry. The student will calibrate radiation beams, perform quality assurance tests, observe patient treatments, and do treatment planning in both brachytherapy and external beam.

GSO2 1174 Introductory Diagnostic Imaging Rotation. 4 sem. hrs.
All semesters, annually. Prerequisite: Introduction to Medical Physics II (GSO21103); note that Introduction to Medical Physics IV (GSO21193), Radiation Detection, Instrumentation and Data Analysis (GSO21053) and Introduction to Radiation Protection (GSO21153) may be taken concurrently; or permission of instructor. Willis, Charles; Reeve, Donna. This rotation provides the student the opportunity to obtain clinical and practical exposure to diagnostic imaging and physics practices. In addition to the observation of diagnostic studies in radiography (e.g., general radiology, CT, MRI), ultrasound and nuclear medicine, performance of specific calibrations, and quality-assurance equipment measurement is required of the student. The student will observe patient diagnostic studies, observe the performance of radiological diagnosis, and perform calibration and quality-assurance tests on diagnostic imaging equipment.

GSO2 1183 Applied Mathematics in Medical Physics. 3 sem. hrs.
Fall, annually. Prerequisite: Nine hours or equivalent of calculus and/or analysis and completion of admission deficiencies. Ma, Jingfei. This course consists of a brief review of calculus, linear algebra, and complex variables. Statistical theory and methods appropriate to medical and physical sciences are covered. The course also covers convolutions, transforms, modulation transfer functions and numerical methods.

GSO2 1193 Introduction to Medical Physics IV: The Physics of Nuclear Medicine. 3 sem. hrs.
Spring, annually. Prerequisite: Introduction to Medical Physics I (GSO21093), Radiation Detection, Instrumentation, and Data Analysis (GSO21053) (may be concurrent) or permission of instructor. Wendt, Richard. This course introduces graduate students to the basic science and instrumentation of nuclear medicine and magnetic resonance imaging. It presents scientific principles underlying quantitative radionuclide organ imaging methods for dosimetry and treatment planning.

GSO2 1203 Electronics for Medical Physicists. 3 sem. hrs.
Fall, annually. Prerequisite: Undergraduate electronics course covering basics of analog
and digital circuits, or permission of instructor. Bankson, James. This course emphasizes the analog and digital electronics associated with scientific instrumentation, particularly as related to medical physics technology. Topics include review of analog DC and AC circuit analysis and the use of voltage regulators, filters, polyphase circuits, and operational amplifiers in medical physics instrumentation. The production and detection of RF signals and shielding/grounding techniques for noise reduction will be addressed. Digital logic and components, including gates, flip-flops, ADCs, and DACs, will be reviewed and their use in medical physics instrumentation will be discussed. Common microprocessor interfaces and computer networking schemes will also be reviewed.

GS02 1731 Medical Physics Seminar. 1 sem. hr.

Fall and Spring, annually. Prerequisite: None. Starkschall, George (Fall); Johnson, Jennifer (Spring). In the Fall term, students present talks on selected topics in general medical physics, therapy, and medical imaging. The objectives are to acquaint students with a wide range of medical physics topics, and to develop public speaking skills. In the Spring term, faculty and staff speak to students about ongoing research and research opportunities for students. The objectives are to familiarize students with ongoing research and to assist them in selecting research topics.

COURSE OFFERINGS IN BIOCHEMISTRY

GS03 1011 Emerging Fields in Biochemistry and Molecular Biology: RNA Biology. 1 sem. hr.

Spring, annually. Prerequisite: None. Boehning, Darren. The goal of this mini course is for students to develop grant writing and peer review skills in the context of learning cutting edge RNA biology. The class will be divided into 11 modules (twice per week) that are each 1.25 hours-long focused on new topics in RNA biology: noncoding RNA, the CRISPR/CAS system, and RNA chemical modifications. The fourth and eleventh classes will be discussion-based and run primarily by a teaching assistant with some guided input from the course director or guest lecturer. The first of these two discussions will focus on what constitutes writing a successful proposal and peer review. The last class will be a “mock study section” moderated by the teaching assistant and instructors to review proposals. Students are required to write a 2-page, NIH-style proposal based upon the papers discussed in class. After the students turn in their proposals, the instructors will de-identify and redistribute the proposals back to the students. The students will then be required to write short critiques on two, randomly-assigned proposals (1/2 page each) and present them at the peer review held during the last class. Students receive a letter grade, which is contingent on the completion of the required written proposal and written critiques. When taken with GS031021, this course satisfies the GSBS Scientific Writing requirement.

GS03 1021 Emerging Fields in Biochemistry and Molecular Biology: Translational Science and Molecular Medicine. 1 sem. hr.

Spring annually. Prerequisite: None. Xia, Yang. The goal of this mini course is for students to develop grant writing and peer review skills in the context of learning cutting edge Translational Science. The class will be divided into 11 modules (twice per week) that are each 1.25 hours-long focused on new topics in Molecular Medicine: hemolytic disorders, hypertension and autoimmunity, aneurysms, Lyme disease, and pulmonary disorders. The fourth and eleventh classes will be discussion-based and run primarily by a teaching assistant with some guided input from the course director or guest lecturer. The first of these two discussions will focus
on what constitutes writing a successful proposal and peer review. The last class will be a “mock study section” moderated by the teaching assistant and instructors to review proposals. Students are required to write a 2-page, NIH-style proposal based upon the papers discussed in class. After the students turn in their proposals, the instructors will de-identify and redistribute the proposals back to the students. The students will then be required to write short critiques on two, randomly-assigned proposals (1/2 page each) and present them at the peer review held during the last class. Students receive a letter grade, which is contingent on the completion of the required written proposal and written critiques. When taken with GS031011, this course satisfies the GSBS Scientific Writing requirement.

GS03 1023 *Current Methods in Structural and Molecular Biology.*
3 sem. hrs.

Spring, annually. Prerequisites: *Foundations of Biomedical Research* (GS211017) or two semesters of undergraduate biochemistry. Xia, Yang. The goal of this course is to instruct students in cutting edge methodologies that relate to both structural and molecular biology. The class will consist of 43 1-hour lectures held on Monday, Wednesday, and Friday. Individual lecturers are chosen from multiple GSBS Graduate Programs based on their expertise in the relevant technologies. The lectures will provide a sound foundation in the principles, appropriate applications, and limitations of a repertoire of techniques ranging from qRT-PCR to metabolomic profiling to basic recombinant protein expression and analysis. The course is designed to act synergistically with techniques covered in the Core Course.

GS03 1031 *Emerging Fields in Biochemistry and Molecular Biology: Advanced Cell Signaling.*
1 sem. hr.

Spring, annually. Prerequisite: None. Boehning, Darren. The goal of this mini course is for students to develop critical analysis and presentation skills in the context of learning cell signaling. The class will be divided into 11 modules (twice per week) that are each 1.25 hours long, focused on new topics in second messenger signaling with a focus on calcium signaling and associated cutting edge technical approaches for monitoring cell signaling pathways in vivo. The course will be divided into two lectures followed by a presentation and critical analysis of current literature.

GS03 1711 *Seminars and Literature Study in Biochemistry and Molecular Biology.*
1 sem. hr.

Fall and Spring, annually. Prerequisite: General knowledge of biochemistry. Serysheva, Irina. This course will consist of formal seminars given by staff and visiting scientists in the broad disciplines of biochemistry and molecular biology.

COURSE OFFERINGS IN CELLULAR, MOLECULAR AND DEVELOPMENTAL BIOLOGY

GS04 1022 *Vascular Biology: Basic Science to Clinical Research.*
2 sem. hrs.

Spring, annually. Prerequisite: None. Open to all GSBS students. Geng, Yong-Jian. The blood vessels constitute the largest tubing system that transports blood between the heart and other organs and tissues. Vascular diseases are the leading cause of death and disability. This advanced biomedical science course is designed to explore modern concepts of vascular biology and human vascular diseases, and will introduce and discuss current basic and clinical advances in the field. The course will emphasize molecular aspects of vascular biology, physiopathological processes, and the development of advanced therapeutic technology in vascular disease. A
unique feature of the course is its integration of basic and clinical research, with a focus on translational research. The aspects of vascular biology to be covered include development, cell biology, genomics, disease processes, and therapeutic approaches. Lecturers will be drawn from researchers and clinicians in the field from several institutions in the Texas Medical Center, including UTHealth, MD Anderson Cancer Center, Baylor College of Medicine, and Rice University. The focus on current research directions will provide excellent opportunities for students interested in vascular biology as they plan their own research careers.

GS04 1032 Molecular Epidemiology. 2 sem. hrs.

Spring, even-numbered years. Prerequisite: None. Wu, Xifeng. The causes of most chronic diseases in the general population involve the interaction of inherited genotypes, somatic genetic damage, exogenous exposures, and endogenous metabolic pathways. A complete understanding of disease etiology may therefore require a multidisciplinary approach that draws on methods from epidemiology, statistics, classical genetics, and molecular biology. In addition to an overview of molecular biology and epidemiology, this course will present methods and techniques for molecular epidemiology studies. Emphasis will be placed on the application of biomarkers. Advantages and limitations of using biomarkers in epidemiologic studies will be discussed.

GS04 1042 Stem Cells in Biomedicine. 1 sem. hr.

Spring, annually. Prerequisite: Permission of instructor. Akesson-Wassler, Michael. A stem cell is a cell from the embryo, fetus, or adult that under certain conditions, has the ability to reproduce itself for long periods or, in the case of adult stem cells, throughout the life of the organism. It also can give rise to the specialized cells that make up the tissues and organs of the body. Much basic understanding about embryonic and adult stem cells has come from animal research and from stem cell lines established from embryonic tissues.

The objective of this course is to provide students information on stem cell biology and the latest development in animal and human stem cell research and application. This course will offer students an opportunity to improve their knowledge of adult and embryonic stem cells and master this research tool for their studies. The long-term objective of this course is to increase the number of researchers who have both the knowledge and skills in the use of animal and human stem cells.

Students will receive a review of basic stem cell biology and experimental/clinical application of stem cells in biomedicine for the use of human biological materials, including proper exposure precautions, safe methods of disposal, and scientific record keeping. Students will also have the opportunity to learn recent development in stem cell research in both basic and clinical medicine. A group of scientists with broad expertise on stem cell biology, biochemistry, and clinical application will teach portions of this course.

GS04 1043 Molecular Principles of Virology. 3 sem. hrs.

Fall, annually. Prerequisite: None. Sastry, Jagan. This general virology course places emphasis on both DNA and RNA animal viruses in terms of their properties, identification, classification, virus-host cell interactions, mechanisms of virus replication, and virus-induced transformation. The involvement of tumor viruses in the neoplastic disease process also is presented.

GS04 1051 Fluorescence and Electron Microscopy: Imaging Cells and Molecules. 1 sem. hr.

Spring, annually. Prerequisite: General knowledge of microbiology and biochemistry and consent of instructor. Hung, Ton-That and Liu, Jun. Fluorescence and electron microscopes
permit the examination of cellular features at high magnification. This course is designed to provide the theory, fundamental operating principles, specimen preparation techniques of fluorescence microscopy, transmission electron microscopy, and cryo-electron microscopy. At the end of the course, students will be able to prepare specimens, operate the instruments, and collect and interpret data. This is a laboratory course with advanced microscopic techniques emphasis for students in the Microbiology and Molecular Genetics Program.

GS04 1072 Principles of Stem Cell Biology.

Spring, annually. Prerequisite: None. Davis, Brian and Zsigmond, Eva. Stem cells, be they embryonic or somatic, play crucial roles in the development and functional maintenance of individual organ systems and complete organisms. As has already been well demonstrated for the blood-forming system through bone marrow transplantation, stem cells can be utilized clinically for treatment of genetic or acquired diseases. The ensuing decades will undoubtedly provide many more successful clinical applications of stem cells in regenerative medicine. Stem cells may also play critical roles themselves in the initiation and maintenance of certain diseases, such as cancer. This course will provide a present-day understanding of the precise definition, molecular characterization, and biological function of stem cells. The course focus will primarily be on fundamental issues regarding stem cells, and less on their wide range of potential future applications. Completion of this course should adequately prepare students to both identify and understand fundamental issues in current stem cell research, as well as to permit students themselves contribute to advancing this field through research.

GS04 1073 Developmental Biology.

Fall, annually. Prerequisite: Consent of instructor. Behringer, Richard. Developmental Biology is one of the fundamental modern biological disciplines. This course provides an in-depth examination of the basic cellular, molecular, and genetic mechanisms by which a fertilized zygote transforms into an organism with fully differentiated and functioning tissues. Topics covered will include cell-to-cell communication, patterning of the embryo, tissue morphogenesis, cell differentiation and stem cells, advantages and disadvantages of classical and genetic model organisms for analyzing development, postembryonic development and regeneration, and the profound implications of developmental biology for medicine and evolution. The course is lecture-based but will emphasize the experimental evidence underlying the basic principles of Developmental Biology and will discuss current debates and recent findings that have yet to be simplified for textbook presentation.

GS04 1093 The Biology of Cancer Metastasis.

Fall, annually. Prerequisite: Consent of instructor. Kalluri, Raghu. This is a didactic introductory level course entirely dedicated to the study of the cellular biological processes that underpin cancer metastasis. This course will cover basic, translational, and clinical knowledge, with specific emphases on the metastatic cascade: seed and soil hypothesis, organ-specific metastasis, cell cycle and metastasis, multiple therapies for various metastatic cancers, and will address the process of taking basic research to the clinic ("bench-to-bedside") for three major metastatic human cancers.

GS04 1103 Principles of Therapeutics.

Spring, annually. Prerequisite: Basic understanding of biochemistry and cell biology. Hittelman, Walter; Zhang, Shuxing. This course will establish a foundation of the principles of therapeutics and will introduce students to the principles and history of therapeutics the current state of drug development. The course is structured so that students are introduced to human genome...
and causes of disease. A session will focus on target identification, protein crystallography,
molecular modeling, and structure-based drug design and medicinal chemistry that will include
drug design, synthesis, optimization, lead product identification, and chemical synthesis of
lead product. Other sessions will focus on how chemicals serve as genetic modifiers and
will introduce students to high throughput drug screening and siRNA screening. Toxicity
and pharmacology play major roles in drug design, drug dosing, drug schedule, and route of
administration. The role of biomarkers, genomics, and proteomics will be included with an
emphasis on therapeutics. Students will be introduced to diverse strategies for therapy that
include natural products, immunotherapy, gene therapy, and blood and marrow transplantation.
A review of the process of moving a drug from laboratory to clinic will finish the course and will
introduce students to translational and clinical research.

GS04 1183 Molecular Methods and Bioinformatics.

Spring, even years. Prerequisite: One semester of core coursework. Wood, Richard; Shen,
Jianjun. This course will introduce graduate students, at an early stage of their research
careers, to a wide variety of methods and techniques especially applicable to research in
modern molecular biology. The course will feature a diverse group of instructors, and each of
them has a specialized research knowledge of a particular group of molecular methods and
bioinformatics. Each instructor will combine classroom lecture with a practical look at advanced
instrumentation applicable to different analysis techniques. The class sessions cover structural
analysis, methods for analysis of gene expression and chromatin modification, metabolomics,
proteomics, and imaging. Students will learn about the theoretical basis of modern methods
and techniques for research in molecular biology, about the different types of information that
can be gained by application of different techniques to a problem, which techniques are most
appropriate in a given situation, and data interpretation.

GS04 1203 Experimental Genetics.

Spring, annually. Prerequisite: None. Huff, Vicki. This course provides students with a base
of knowledge about concepts central to contemporary genetics (i.e. complementation,
recombination, mutational screens, mosaic analysis, gene targeting) and covers current
approaches used in the analysis of classical eukaryotic genetic systems including human,
mouse, zebrafish, flies, nematode worms and yeast.

GS04 1213 Mechanisms in Cancer Therapeutics.

Fall, annually. Prerequisite: Basic understanding of biochemistry and cell biology. Konopleva,
Marina; Hittelman, Walter. This course will establish a foundation of the principles of
cancer therapy, including pharmacologic rationales, consideration of biological targets, and
mechanism-based approaches to combinations. A major emphasis will be placed on agents
that damage DNA, and the response of tumor cells to such insults. In depth presentations will
consider all classes of chemotherapeutic agents, their metabolism, and mechanisms of action,
and the resistance mechanisms of tumor cells. Mechanistic rationales for other therapeutic
modalities used for cancer treatment such as radiotherapy, gene therapy, and immunotherapy
will also be covered. Students will have the opportunity to learn to identify novel therapeutic
targets, and the procedures used to develop new agents for clinical evaluation.

GS04 1223 Fundamental Mechanisms of Cancer Development.

Spring, annually. Prerequisite: None. Gan, Boyi; Chen, Jichao. Cancer is defined by a series
of abnormal events in the cell that lead to the formation of a tumor with the ability to spread
to distant sites. Some hallmarks of cancer include aberrant proliferation, genomic instability,
evasion of cell death and immune responses, and activation of a variety of cell growth signaling pathways. This course is organized into weekly modules consisting of 2 lectures and a journal club. Each module is organized to first describe each of these events as they occur during normal development or homeostasis followed by a lecture on how these processes or pathways go awry to develop cancer. The last lecture of each module consists of a journal club with class-wide discussions of a recent or classic paper in the field. Module topics will be fundamental, timely, and cutting edge including signaling pathways, cancer genomics, non-coding RNAs and metabolism in cancer and therapy. The teaching philosophy emphasizes development of critical thinking and understanding of central concepts through class discussion and weekly journal clubs.

GS04 1233 Basic and Translational Cancer Biology.
3 sem. hrs.
Spring, annually. Prerequisite: None. Keyomarsi, Khandan; Bar-Eli, Menashe; Bast, Robert. This course will synthesize knowledge of critical aspects in human cancer biology for understanding molecular diagnostics and therapeutics. Clinically relevant examples will be used with each lecture. This is a lecture course on recent progress and active basic and translational cancer biology research. Some of the students taking this course will have a medical background. Lecturers will explain the medical background, as needed, for graduate students. Topics will include angiogenesis and metastasis, oncogenes, targeting drivers, tumor suppressors, BRCAs, microenvironment, stem cells, cancer imaging, tumor heterogeneity, systems biology, cell cycle basics, cell cycle treatment, DNA damage, epigenetics, cell signaling, targeted therapy, immunobiology, immunotherapy, microRNAs, cancer metabolism, single cell sequencing: macroscopic and mechanistic, and cancer prevention.

GS04 1243 Epigenetics: From Mechanism to Disease.
3 sem. hrs.
Spring, annually. Prerequisites: Undergraduate biochemistry and genetics (one semester, but one year strongly recommended) or graduate-level biochemistry and genetics courses (one semester). Bedford, Mark; Chen, Taiping; Shi, Xiaobing. Epigenetics is defined as the study of heritable changes in gene expression or phenotype that does not involve changes to the underlying DNA sequence. In our body, each cell has the same set of genes, yet different cell types look very different from each other (for example, fat cells versus neurons versus T cells) and they each perform very distinct functions. These differences are achieved by epigenetic control of gene expression. In disease states like cancer, the epigenetic control of gene expression can go awry. This course will cover the principles of epigenetic control of gene expression and chromatin dynamics, how epigenetic regulation contributes to stem cell identity, cellular differentiation and development, and how it goes wrong in diseases including cancer. In addition, the course material will cover the common techniques used for epigenetic studies. This course is organized into 2 lectures a week. The teaching philosophy emphasizes understanding of central concepts and development of critical thinking through lecturing and class discussion. An important aspect of this course is distance learning: half the lectures will be given in Houston classrooms and video conferenced to Science Park, and the other half of the lectures will be given in Science Park and video conferenced to Houston.

GS04 1731 Seminar in Developmental Biology.
1 sem. hr.
Spring, annually. Prerequisite: Permission of instructor. Galko, Michael; Arur, Swathi. This course involves weekly 90-minute meetings for student presentations on contemporary topics in developmental biology. The topics will be drawn from the current literature and will emphasize genetic and molecular approaches.
GS04 1751 **Seminar in Cell Signaling and Regulation.** 1 sem. hr.
Spring, odd-numbered years. Prerequisite: None. Schonbrunn, Agnes; Breton, Ghislain. This course has two major objectives. The first objective is to familiarize students with current research in regulatory biology with particular emphasis on molecular mechanisms of cell regulation and signaling. The second objective is to teach students how to give outstanding research seminars. Weekly 90-minute meetings involve alternate faculty and student presentations on current problems in regulatory biology. Faculty presentations introduce each topic and provide a broad and critical overview of approaches used to tackle research problems. Student presentations cover recent articles from leading journals on the same topic. Students are instructed in the preparation of slides/overheads, seminar organization and techniques of oral presentation and are given detailed feedback by faculty and fellow students following their presentations. Three to four topics are covered each year and the topics discussed vary annually. Students can, and often do, register for the course multiple times during their graduate careers.

GS04 1761 **Current Topics in Oncogene Research.** 1 sem. hr.
Spring, annually. Prerequisite: None. Hung, Mien-Chie. This is a seminar course in which students will meet once every week. Each student is expected to give at least one seminar per semester. The seminar topic will be mainly on oncogene-related subjects from current leading journals. The objectives of the course are to develop students’ oral communication skills in science and to become familiar with up-to-date literature in oncogene research.

GS04 1811 **G & D Scientific Writing.** 1 sem. hr.
Fall, annually. Prerequisite: Consent of instructor and student must be at least in their second year to take this course. Behringer, Richard; Miller, Rachel; Swindell, Eric. This course is designed for second-year students who have already chosen their thesis lab. Students will be taught how to write scientific papers. The goal of this class will be for each student to write a review of the literature of their field of research for submission and publication. This course satisfies the GSBS Scientific Writing requirement.

GS04 1812 **Seminars in Molecular Mechanisms of Human Cancer.** 2 sem. hrs.
Fall, annually. Prerequisite: None. Lee, Mong-Hong. This is a seminar course to provide in-depth knowledge on recent developments in human cancer research. The focus will be on the molecular basis of human neoplasia. Each week, two students will discuss background knowledge and current developments on a specific human cancer.

GS04 1813 **History of Biology and Cancer Science.** 3 sem. hrs.
Fall, annually. Prerequisite: None. Kalluri, Raghu; LeBleu, Valerie. This course is designed to have students experience the history of biology and cancer science as it evolved. Seminal papers in the last 100 years will be reviewed in a chronological fashion to have students appreciate seminal discoveries that advanced our fundamental understanding of human biology and the disease called cancer. Through this journey, students will be able to experience how techniques and tools to study biology evolved and how such knowledge was applied to understand and unravel new information about cancer. The course will highlight how such fundamental biology helped translate science and help generate drugs to combat cancer.

GS04 1821 **G & D Oral Scientific Presentations.** 1 sem. hr.
Spring, annually. Prerequisite: None. Gladden, Andrew. This course is designed for second year students who have chosen their thesis lab and are preparing for their candidacy exam. The students will use their thesis project as a template to develop a 20-minute scientific presentation.
All aspects of the presentation will be covered including title and introduction slides, organizing your data into a story, model slides and conclusions, and answering questions. In addition to the 20-minute presentation, students will also give two elevator talks: one to a scientific group and one to a non-scientist group. This course is designed to prepare the student for the oral defense portion of their candidacy exam.

COURSE OFFERINGS IN IMMUNOLOGY

GS06 1013 Immunology.
3 sem. hrs.
Spring, annually. Prerequisite: Undergraduate-level biology and biochemistry courses plus a basic knowledge of cellular and molecular biology. Schluns, Kimberly. Topics covered in this lecture series include anatomy and development of the immune system; structure, function and genetics of antibodies; T-cell antigen receptors; functions and cooperative interactions of lymphoid cells; structure and function of molecules encoded by the Major Histocompatibility Complex (MHC); lymphokines and their receptors; cellular interaction molecules; and specific immunological tolerance. Medically related subjects that will be covered from a basic science perspective include immunopathology, immunodeficiency, allergy and other hypersensitivities, autoimmunity, organ transplantation, tumor immunology, and AIDS.

GS06 1132 Application of Tumor Immunology in the Clinical Setting
2 sem. hrs.
Spring, odd-numbered years. Prerequisites: Previous immunology course such as Immunology (GS061013) or permission of instructor prior to enrollment. Naing, Aung. This course builds upon basic immunology to provide a foundation for tumor immunology as it is applied in the clinical setting. Graduate students, postdoctoral fellows, and medical residents/fellows who participate in this course will gain an understanding of immune surveillance, tumor markers, human tumor immune responses, novel cancer immunotherapeutics, and regulatory process and clinical trial design for cancer immunotherapeutics.

GS06 1611 Advanced Topics in Immunology.
2 sem. hr.
Spring, annually. Prerequisite: Immunology (GS061013) and biochemistry or permission of instructor. Ullrich, Stephen. This course is an analysis of current topics in immunology. Weekly oral presentations of an assigned topic will be made by participating students. Course emphasis is on the development of communication skills and analysis of current research areas.

COURSE OFFERINGS IN MICROBIOLOGY

GS07 1011 Topics in Biodefense and Emerging Infections.
1 sem. hr.
Fall, odd-numbered years. Prerequisite: None. Koehler, Theresa; Norris, Steven. The broad impact of bioterrorism on scientific research and the role of scientists in preparedness and response will be addressed in a series of seminar presentations. Speakers with expertise in diverse areas, including public health response, select agent biology, diagnosis and disease management, and public policy, will present talks which will be followed by group discussion.

GS07 1015 Microbial Genetics and Physiology.
5 sem. hrs.
Spring, annually. Prerequisite: Foundations of Biomedical Research (GS211017) or permission
of instructor. Ling, Jiaghan. The objective of this course is to provide second-semester, first-year students with a broad knowledge of genetics and physiology as they pertain specifically to prokaryotic and eukaryotic microbes. Topics covered include genetics, gene expression, cell division, cell structure and biogenesis, energy and metabolism, signaling and development, stress response, and pathogenesis (virulence factors and host response). The class will be divided into 15, one-week units in which at least two faculty-led lectures and two student-led, roundtable presentations of the primary literature will take place.

GS07 1092 Topics in Microbiology and Molecular Genetics.

2 sem. hrs.

Fall, annually. Prerequisites: Previous coursework in molecular microbiology or permission of instructor. Kim, Nayun. This course provides cutting-edge information on selected topics in Microbiology and Molecular Genetics and develops the student's ability to critically review research and develop a research program. The course primarily consists of student presentations and discussion of recent scientific articles. The list of articles for each session will be provided in advance. Students will also be required to develop and write a full NIH-style grant proposal. This course satisfies the GSBS Scientific Writing requirement.

GS07 1731 Seminar in Infectious Diseases.

1 sem. hr.

Fall, even-numbered years. Prerequisite: Coursework or work experience in microbiology. Norris, Steven. This is a seminar course which covers the biologic and clinical basis of infectious diseases. Students will read assigned research articles, participate in group discussions, and critically analyze articles in the general areas of microbial pathogenesis, host-parasite interactions, diagnosis, therapy, and prevention.

GS07 1741 Literature Survey in Microbiology and Molecular Genetics.

1 sem. hr.

Fall and Spring, annually. Prerequisite: None. De Lay, Nicholas. Students will present and critically evaluate recent journal articles. The specific articles will be chosen by the presenter from the literature in the fields of microbiology and molecular genetics. Students will be evaluated on their presentation and participation in discussions.

GS07 1751 Microbiology and Molecular Genetics Seminar Series.

1 sem. hr.

Fall and Spring, annually. Prerequisite: None. Koehler, Theresa. Students will attend the weekly departmental seminars series in the Department of Microbiology and Molecular Genetics.

COURSE OFFERINGS IN HUMAN GENETICS

GS11 1011 Embryology.

1 sem. hr.

Fall, annually. Prerequisite: 1st year Genetic Counseling students. Singletary, Claire; Czerwinski, Jennifer.

This course provides an introduction to normal human embryologic development of the major body systems. The presented topics will create a foundation on which students can receive information on abnormal development relevant to genetic disease. In addition, students are expected to consider how these concepts can be communicated to a patient in a clear, concise manner. This course is coordinated by two board certified genetic counselors and is facilitated by Medical School and Dental School faculty.
GS11 1012 Cancer Genetics (Genetic Counseling). 2 sem. hr.
Fall, annually. Prerequisite: Permission of instructor. Singletary, Claire. This course is taught by the faculty and staff of UT MD Anderson Cancer Center and includes lectures by experts in basic science cancer research, clinical oncology, pathology, psychology and cancer genetic counseling. Some of the topics covered include overview of cancer biology and clinical oncology, hereditary colon cancer syndromes, hereditary breast cancer syndromes, rare cancer syndromes, management of high risk patients, collecting a cancer-focused family history, hereditary cancer risk assessment models and tools, and psychosocial aspects of cancer risk assessment and counseling. In addition to didactic lectures, the course is supplemented by student presentations and a patient panel. Students will expand and refine the knowledge and skills learned in this course during their clinical cancer genetics rotation. This course provides students with the background necessary to the practice of hereditary cancer risk assessment and counseling.

GS11 1013 Genetics and Human Disease. 3 sem. hr.
Fall, annually. Prerequisite: Permission of instructor; general genetics and statistics recommended. Hanis, Craig; Boerwinkle, Eric. This course introduces principles and methods of human genetic analysis with special reference to the contribution of genes to our burden of disease. Although molecular, biochemical, and morphogenic processes controlled by genes will be briefly surveyed, the course objective is to provide descriptions of the analytical processes whereby genetic mechanisms are inferred and genes located on chromosomes.

GS11 1021 Psychosocial Practicum. 1 sem. hr.
Spring, annually. Enrollment required of all Genetic Counseling MS students. Open only to Genetic Counseling MS students. Singletary, Claire; Czerwinski, Jennifer. This is a two-year course focusing on psychosocial issues in genetic counseling comprised of various units focusing on psychosocial issues in genetic counseling. Topics surrounding cultural competency are also included. Students will have the opportunity to participate in various in-class activities, discussions and role-plays. Role-plays allow students to consider different counseling techniques, to learn how personal biases may affect the counseling session, and to practice how to employ empathy, advanced empathy, confrontation, active listening, reflecting, etc. This course is coordinated by two board certified prenatal genetic counselors and is facilitated by the Genetic Counseling Program faculty.

GS11 1031 Contemporary Issues in Genetic Counseling. 1 sem. hr.
Spring and Fall, annually. Prerequisites: Psychosocial Issues in Genetics (GS111082); Ethical Dimensions of the Biomedical Sciences (GS211051). Singletary, Claire; Noblin, Sarah. This course provides a platform for exploration of the complex ethical and moral issues that arise in genetic counseling. The format varies weekly and includes presenting and discussing ultrasound abnormalities, debating ethical case scenarios, and participating in seminars for continued professional development. Genetic counseling students in their second year are eligible for this course.

GS11 1033 Quantitative Methods in Genetic Epidemiology. 3 sem. hr.
Spring, annually. Prerequisite: Genetics and Human Disease (GS111013). Shete, Sanjay. This course offers practical experience in the analysis of genetic marker data. The course will cover the basic theory behind genetic analysis, study designs, and will focus on learning analysis techniques and computer packages.
GS11 1042 Population Genetics. 2 sem. hr.
Spring, annually. Prerequisite: Genetics, statistics, and consent of instructor. Fu, Yun-Xin; Xiong, Momiao. This course will discuss the principles of population genetics and their applications to human populations as well as statistical methods for analyzing genetic samples of individuals from one or more populations. Topics to be covered include random mating, linkage, inbreeding, natural selection, maintenance of polymorphic and deleterious genes, molecular evolution, quantitative genetics and a modern population genetics approach known as coalescent theory, the cornerstone for analyzing DNA sequence samples from populations. Topics may vary from year to year with the background of the students. Studies at the molecular level will be emphasized.

GS11 1053 Data Science: Analytical Methods. 3 sem. hr.
Spring, annually. Prerequisites: Introductory statistics and inference, basic math and algebra skills, linear regression, and statistical programming. Jamal, Jose-Miguel; Wu, Hulin; Wang, Ningtao. In this course we will introduce new concepts of Data Science and Big Data analytics. We will cover application of various novel statistical and machine learning, data mining and artificial intelligence methods used to do the analysis, integration and predictions of large complex data from health sciences, industries and other disciplines. The emphasis will be on creative thinking, problem-solving skills, and hands-on data exploration to generate and address important scientific and business questions from a variety of complex data. Among other methods, sparse regression, feature construction and feature set reduction, classification, clustering, tree-based approaches and dependency modeling will be detailed. This course is cross-listed at UTHealth School of Public Health (PH 1998). The venue of the course will be at the SPH.

GS11 1073 Introduction to Genomics and Bioinformatics. 2 sem. hrs.
Fall, annually. Prerequisites: Calculus, statistics, and consent of instructor. Xiong, Momiao; Fu, Yun-Xin. This course introduces basic concepts, statistical methods and computational algorithms and tools for the creation and maintenance of databases of biological information, DNA sequence analysis, modeling of evolution, genetic studies of complex diseases including linkage analysis, linkage disequilibrium and association studies, gene expression data analysis, and identification of biological networks. Students will be introduced to the basic concepts behind bioinformatics and computational biology tools. Hands-on sessions will familiarize students with the details and use of the most commonly used online tools and resources.

GS11 1082 Psychosocial Issues in Genetics. 2 sem. hrs.
Fall, annually. Prerequisites: Genetics and Human Disease (GS111013) and Topics in Medical Genetics I (GS111622). Singletary, Claire. Psychosocial aspects of genetic counseling combine didactic lectures and role-play to teach psychosocial issues associated with genetic disease. Topics include basic counseling skills, interviewing skills, giving a family a diagnosis, grief theory, family adjustment theory, crisis intervention theory, individual adjustment theory, dealing with the educated and uneducated patient, noncompliant patients, disabilities, multicultural issues, and counseling for chronic disease. This course is taught by the program director along with a team including a developmental specialist, a psychologist, nurses, and genetic counselors.

GS11 1092 Genetic Epidemiology of Chronic Disease. 2 sem. hrs.
Spring, annually. Prerequisite: None. Hanis, Craig. This course will expose students to the evidence and logic involved in inferring the contribution of genetic mechanisms to those diseases of public health importance. Emphasis will be on developing a framework for
assessing the impact of genes on common disease, but will not include detailed methodological developments or statistical techniques. The format will be a weekly two-hour session in which a single disease will be examined. In this way students will be exposed to a broad spectrum of diseases and see both the uniqueness and the similarities of the problems inherent to each.

GS11 1093 Clinical Genetics in Epidemiology.
3 sem. hrs.
Spring, annually. Prerequisite: Recent college biology or equivalent. Daiger, Stephen P. The intent of this course is for students to understand the role clinical genetics plays in the practice of epidemiology, and the relationship between epidemiology and medical genetics. Emphasis will be on the practice of medical genetics as it may be encountered by professionals in public health. Teaching will be by didactic classroom instruction in which subject material covers basic biology of clinical genetics, genetic diseases and birth defects as seen in a medical genetics clinic; the provision of genetic services in Texas; and public policy issues relating to the practice of medical genetics. The course is cross-listed at UTHealth School of Public Health (PH2830). The venue of the course will be at the SPH.

GS11 1101 Introduction to Human Molecular Genetics: Module 1: Basic Molecular Human Genetics.
1 sem. hr.
Fall, annually. Prerequisite: None. Hixson, James; Sen, Subrata; Fornage, Myriam. This course provides students with basic concepts, principles, and language relating to human molecular genetics. This course is designed to prepare students for subsequent modules and courses in the Human and Molecular Genetics Program (HMG), but any student who wants a basic introduction to human molecular genetics is welcome. Topics covered include the basic aspects of the flow of genetic information from DNA to proteins, structure and function of chromosomes and genes, Mendelian principles of inheritance and inheritance patterns in pedigrees, mechanisms of gene regulation, mechanisms of mutation and how mutations can lead to disease, and major contemporary molecular tools used in human genetics.

GS11 1103 Evolution of DNA and Protein Sequences.
3 sem. hrs.
Fall, odd-numbered years. Prerequisite: Calculus, statistics, and consent of instructor. Fu, Yun-Xin. This course will provide basic principles for understanding factors that govern the evolution of DNA and protein sequences. Students will be provided with the opportunity to learn about the formation and evolution of multigene families and other evolutionary phenomena. They will also be introduced to statistical methods and computer programs for analyzing DNA and protein sequence data. There will be computer demonstrations of some topics. The application of these principles and methods to genome-wide epidemiology will be discussed. This course is cross-listed at UTHealth School of Public Health (PH1982). The venue of the course will be at the SPH.

GS11 1111 Introduction to Human Molecular Genetics: Module 2: Molecular and Functional Genomics.
1 sem. hr.
Fall, annually. Prerequisite: Permission of instructor. Zhang, Sheng; Cote, Gil. The course will provide knowledge and insight into the use of genetic information as it applies to understanding cell/organism function. An emphasis will be placed on mechanisms through which aberrant molecular and genetic function can be identified as the underlying cause of disease. Topics covered in this lecture series include application of next generation sequencing methods to uncover disease-associated DNA changes, functional approaches to differentiating pathogenic from silent mutation, understanding how gene mutation causes disease beyond similar amino acid changes, using expression networks to uncover disease targets, and basic in silico approaches to identification of genomic targets. The purpose of this course is to help the
students to integrate the basic concepts of genetic and genomics with wide range of genome-scale tools for the post-genomic era biomedical research.

GS11 1113 Introduction to Statistical Genetics.

3 sem. hrs.

Fall, annually. Prerequisite: Genetics, calculus, statistics, and consent of instructor. Fu, Yun-Xin; Xiong, Momiao. This course is designed as an introduction to statistical genetics/computational biology, and serves as the entry point to several courses in this area. It reviews the key statistical concepts and methods relevant to statistical genetics, discusses various topics that have significant statistical component in genetics, particularly in population and quantitative genetics. Topics include estimation of gene frequencies, segregation analysis, test of genetic linkage, genetics of quantitative characters, inheritance of complex characters, forensic science and paternity testing, phylogeny and data mining. This course is cross-listed at UTHealth School of Public Health (PH1986). The venue of the course will be at the SPH.

GS11 1121 Introduction to Human Molecular Genetics: Module 3:

Clinical Medical Genetics and Genomics.

1 sem. hr.

Fall, annually. Prerequisite: Permission of instructor. Daiger, Stephen; McDonnell, Timothy; Singletary, Claire. The course provides students with fundamental knowledge and concepts about how genetic discoveries and technologies are used in the clinic and the social and ethical issues that relate to this use. Topics include gene discovery for human disease, molecular diagnostics, delivery of medical genetic services, clinical risk assessment, psychosocial issues and health care policy in medical genetics, and recent advances in treating human genetic disease.

GS11 1131 Introduction to Human Molecular Genetics: Module 4:

Cancer Genetics and Genomics.

1 sem. hr.

Fall, annually. Prerequisite: Permission of instructor. Huff, Vicki; Krahe, Ralf. This course provides students with in-depth knowledge and concepts about the role of genetic, genomic, and epigenetic alterations in human cancer and cancer predisposition; the cellular pathways that are impacted by such alterations; how alterations are identified and functionally validated; and the databases that are used in human cancer genetics.

GS11 1132 Introduction to Genetic Counseling.

2 sem. hrs.

Fall, annually. Prerequisite: Permission of instructor; course is intended for students admitted to the specialized master of science program in Genetic Counseling. Noblin, Sarah. In this course, students learn the foundation of the genetic counseling profession, including the history of the profession, intake and pedigree skills, ethnic carrier screening, and basic prenatal, pediatric, and cancer genetic counseling concepts. Material is delivered in small group presentation and discussion format, as well as via lecture and practice-based role-play. The course is taught by the Program Director with supplemental instruction from the genetic counseling program faculty. Students in the first semester of the genetic counseling program are eligible for this course.

GS 11 1142 Approaches to Genetic Counseling Research I.

2 sem. hrs.

Spring, annually. Prerequisite: *Introduction to Genetic Counseling (GS11 1132)*. Hashmi, S. Shahrukh. This course provides an introduction to basic concepts in epidemiology, statistics and research instruction on how to use STATA to perform univariable statistical analysis. Students will also be exposed to research ideas in cancer, perinatal and pediatric research that would help them formulate their own thesis research questions. Genetic counseling students in their first year of study are eligible for this course.
GS11 1152 Approaches to Genetic Counseling Research II.
2 sem. hrs.

Fall, annually. Prerequisite: Approaches to Genetic Counseling Research I (GS111142). Hashmi, S. Shahrukh; Hecht, Jacqueline. This course provides an introduction to advanced concepts in epidemiology and statistics and instruction on how to use STATA to perform advanced multivariable statistical analysis. Students will also receive instruction on concepts in human research and rationale for IRB reviews. Group discussions during this course will help students polish their research questions and methodology. Genetic counseling students in their first year of study who have passed Approaches to Genetic Counseling Research I are eligible for this course.

GS11 1172 Prenatal Genetic Counseling.
2 sem. hrs.

Fall, annually. Open only to Genetic Counseling M.S. students. Singletary, Claire and Czerwinski, Jennifer. This course provides an in depth review of current topics in prenatal genetic counseling, including screening and diagnostic testing, ultrasound findings, and teratogens. Students are expected to gain an appreciation for more complex prenatal issues that impact prenatal practice and to work on critical thinking skills. This course is coordinated by two board certified prenatal genetic counselors and is facilitated by the Genetic Counseling Program faculty.

GS11 1173 Introductory Clinical Rotation in Genetic Counseling.
3 sem. hrs.

Spring, annually. Prerequisite: Introduction to Genetic Counseling (GS111132). Singletary, Claire; Czerwinski, Jennifer. This course provides genetic counseling students with the opportunity to become familiar with each clinical setting, including clinical operations, patient population, and other members of the health care team. Students learn how to obtain general and specialty-focused family, pregnancy, and medical histories. They also provide the evaluation and assessment of cases including medical record and literature review. Differential diagnoses are discussed and students observe counseling sessions as well as some diagnostic and medical procedures. As the semester progresses, students begin assuming some of the roles of the genetic counselor during the session, focusing on accurate risk assessment and patient education, and progressing to conducting an entire session. Genetic counseling students in their first year are eligible for this course.

GS11 1174 Advanced Clinical Rotation in Genetic Counseling.
4 sem. hrs.

Spring, Summer and Fall, annually. Prerequisite: Introductory Clinical Rotation - Genetic Counseling (GS111173). Singletary, Claire; Czerwinski, Jennifer. This course provides genetic counseling students with the opportunity to provide the majority of the genetic counseling during sessions, focusing on refining their clinical counseling skills and further developing their psychosocial counseling skills. Students are encouraged to tackle even the most complex cases coupled with appropriate supervisor support. At the conclusion of the advanced rotations, students will be expected to be fully trained genetic counselors. Genetic counseling students in their second year are eligible for this course.

GS11 1611 Special Topics in Cytogenetics.
1 sem. hr.

Fall and Spring, annually. Prerequisite: None. Sen, Subrata. This is a special topics course in cancer cytogenetics, clinical cytogenetics, prenatal diagnosis, molecular cytogenetics, and gene mapping.

GS11 1622 Topics in Medical Genetics I.
2 sem. hrs.

Fall, annually. Prerequisite: None, however, Genetics and Human Disease (GS111013) may be
taken concurrently. Lemons, Jennifer; D’Angelo, Alix. The first semester course focuses on the fundamentals of Medical Genetics. It combines didactic lectures and discussions. The human genetics faculty teach this "state of the art" course.

GS11 1631 Current Topics in Human and Molecular Genetics. 1 sem. hr.
Fall and Spring, annually. Prerequisite: Second year or higher Program students, or by permission of instructor. Vilar-Sanchez, Eduardo; Killary, Ann. Presentation of individual student research projects.

GS11 1642 Topics in Medical Genetics II. 2 sem. hr.
Spring, annually. Prerequisite: Topics in Medical Genetics I (GS111622) and Psychosocial Issues in Genetics (GS111082). Lemons, Jennifer and D’Angelo, Alix. The second semester course focuses on individual topics related to the practice of Medical Genetics. Topics include risk assessment, hemoglobinopathies, prenatal diagnoses, evaluation of organ systems with emphasis on genetic pathogenesis of malformations, metabolic disorders, teratogenesis, and medical reimbursement issues. This course is a combination of didactic lectures and discussions. The lecturers are experts in their respective fields.

GS11 1711 Seminar in Genetics and Population Biology. 1 sem. hr.
Fall and Spring, annually. Prerequisite: Second year graduate standing or higher. Boerwinkle, Eric. Presentation and analysis of individual topics of research.

COURSE OFFERINGS IN PHYSIOLOGY, REPRODUCTIVE BIOLOGY, PATHOLOGY AND COMPARATIVE MEDICINE

GS12 1011 Signal Transduction Group Seminars. 1 sem. hr.
Spring and Fall, annually. Prerequisite: None. Levental, Ilya. This class is a forum in which students, postdoctoral fellows and occasionally faculty present their ongoing research to facilitate discussion, learning and scientific interactions. Areas of research that are discussed include cancer biology, neurobiology, muscle biology, and kidney and GI biology. All students will be expected to attend lectures and participate in discussions. Post-candidacy students will be expected to present a 45-minute seminar describing their thesis research.

GS12 1013 Histology for Graduate Students. 3 sem. hr.
Summer, annually. Prerequisite: None. Smith, Keri; Hickson-Bick, Diane. The purpose of this course is to provide a comprehensive overview of the structure of organ systems and tissues as it relates to their normal function. Students will gain a working knowledge of tissue fixation, sectioning and processing, basic histological staining, and immunohistochemical staining. Light microscopy will be employed to understand the relationship between tissue morphology and function. Comparative studies of mouse, rat, and human tissue will be performed where applicable. Students will also gain “hands-on” experience cutting frozen tissue sections, fixing sections to slides, and performing hematoxylin and eosin and antibody-based staining. Novel technologies for whole tissue imaging will also be discussed. By the end of the course students should have a solid understanding of normal tissue structure, and should be able to apply this knowledge to their own translational research projects.
GS12 1041 *Seminars in Experimental Pathology.*
1 sem. hr.
Fall and Spring, annually. Prerequisite: None. Hickson-Bick, Diane. The course will consist of lectures given by faculty and visiting scientists on current research in experimental pathology. Students will attend weekly seminar presentations and meet, as a group, with visiting lecturers to discuss research and career development.

GS12 1051 *Seminars in Integrative Biology & Pharmacology.*
1 sem. hr.
Fall and Spring annually. Prerequisite: None. Breton, Ghislain. The Department of Integrative Biology and Pharmacology sponsors seminars by visiting scientists, and when there are no visitors, colloquia given by faculty members and postdoctoral fellows at UTHealth. The speakers are chosen by graduate students, postdoctoral fellows, and faculty members in the Department of Integrative Biology and Pharmacology. The presentations are typically at a level appropriate for graduate students. There are no prerequisites, but attendance is required.

GS12 1104 *Anatomy (Head and Neck).*
4 sem. hrs.
Summer, annually. Prerequisite: None. Warner, Raymond; Crabtree, Leonard. This School of Dentistry course accommodates both students with limited anatomical background and advanced students who need detailed knowledge of head and neck anatomy. Basic and advanced anatomy are covered, depending upon the needs of the student. Each region is treated by a lecture followed by a dissection. A good faculty-to-student ratio and discussion in the laboratory give the student the opportunity to learn and understand the material.

GS12 1154 *Introduction to Functional Histology and Pathology*
4 sem. hrs.
Fall, odd-numbered years. Prerequisite: None. McArthur, Mark. This is an introductory course designed to familiarize graduate students with the basic structure and function of different tissues and organ systems. The fundamental mechanisms of cell growth, differentiation, and death will be covered. General pathological processes, as well as pathological processes unique to different organ systems, will be reviewed. The focus will be on understanding 1) how organ function and structure are interrelated, and 2) how organ structure and function determine disease susceptibility.

GS12 1164 *Human Pathobiology*
4 sem. hr.
Spring, annually. Prerequisite: None. Hickson-Bick, Diane. This course is designed to provide a comprehensive introduction to human health and disease at the molecular, cellular, tissue and system levels for each human organ system. Lectures will highlight the key elements routinely covered in medical school: histology, anatomy, physiology and pathophysiology courses with an emphasis on the understanding of the mechanisms of cell injury and death, inflammation and repair, immunopathology, vascular disturbances and carcinogenesis. The course will include two two-hour lectures/practical periods. Students will have opportunities to examine histological and pathological specimens (using multi-headed microscopes), be introduced to human anatomy and physiology and spend time integrating knowledge into clinical scenarios. This is a required course for all students in the Clinical and Translational Sciences Program.

GS12 1232 *Physiology of Pregnancy, Fetus and Neonate.*
2 sem. hrs.
Spring, every three years. Prerequisites: Physiology, reproductive biology, endocrinology, biochemistry, and permission of instructor. Ramin, Susan and Moya, Fernando. Physiology and endocrinology of pregnancy, including maternal adaptation; fetal development; placental function; parturition; neonatal adaptation in extraterine life.
GS12 1254
Cell and Systems Physiology.
4 sem. hrs.

Spring, 2018. Prerequisites: General biochemistry and biology/physiology. Walters, E. Terry and Berdeaux, Rebecca. This is an introductory course emphasizing the principles of physiology. Focus is on the physiological processes that have evolved from single cells and developed into adaptive, integrated systems processes of tissues, organs, and organ systems. Topics covered include cell physiology and physiology of the nervous, endocrine, cardiovascular, renal, respiratory, and gastrointestinal systems.

GS12 1262
Cellular Basis of Cardiac Function.
2 sem. hrs.

Fall, annually. Prerequisite: **Cell and Systems Physiology (GS121254)**. Taegtmeyer, Heinrich. This course will provide a comprehensive review of mechanisms of energy transfer in a highly specialized organ.

GS12 1442
Principles of Experimental Mouse Pathology.
2 sem. hrs.

Summer, annually. Prerequisites: None. Benavides, Fernando. This course conveys the fundamental knowledge needed to perform valid and interpretable research using mouse models. This course will feature lectures covering basic concepts of mouse biology, developmental biology, and genetics; animal study design; genetic and non-genetic mouse models of human diseases; toxicology and drug metabolism; ante mortem and post mortem pathological characterizations; and statistical analysis. Some classes will include a short demonstration (e.g., microscopy, necropsy, or imaging procedures), peer discussions and literature review, or hands-on exercises (e.g., bioinformatics and statistics). The course will feature a diverse group of instructors with a strong background on the subjects presented. This course is taught at the UT MD Anderson Cancer Center Science Park in Smithville, Texas.

COURSE OFFERINGS IN PHARMACOLOGY AND TOXICOLOGY

GS13 1011
Computer-Aided Drug Design.
1 sem. hr.

Fall, annually. Prerequisites: None, but a basic knowledge of chemistry (2D chemical structures, amino acids, etc.) is recommended. Zhang, Shuxing. This course gives introductory knowledge of computer-aided drug design, including both cheminformatics and bioinformatics. All drug discovery stages will be discussed with emphasis on the application of computational approaches in the pipeline, consisting target identification and validation, hit and lead discovery and optimization, and ADME/Toxicity studies. The objectives of this course are to introduce the participants to different computational methods for drug discovery and development. After finishing this course, the students are expected to be familiar with modern cheminformatics and bioinformatics approaches, including QSAR, pharmacophore modeling, molecular docking, virtual screening, ADME/Toxicity predictions, sequence alignment, homology modeling, and protein structure prediction.

GS13 1024
Molecular Basis of Cell Signaling.
4 sem. hrs.

Spring, annually. Prerequisite: Background in biochemistry and cell biology; Consent of the instructor. Du, Guangwei. This course provides a detailed exploration of the molecular basis of cell signaling with emphasis on recent developments, structure-function, and quantitation. The course will include both the regulation of second messenger systems (GPCRs, G proteins, cAMP, IP3 and lipid), ion channels, growth factor-regulated tyrosine kinases, small G proteins
(ras, GEFs, Gaps), kinase/phosphatase pathways, steroid hormones/transcription, and the modeling of these systems.

GS13 1063 *Toxicology I: Principles of Toxicology.*
3 sem. hrs.
Fall, annually. Prerequisites: Prior biological science coursework required (i.e., biology, chemistry or physiology) and permission of instructor. Smith, Mary Ann. This course presents basic principles of toxicology and their applications to the understanding of xenobiotic-induced target organ toxicity. Topics covered include toxicant disposition, mechanisms of toxicity and target organ responses to toxic agents. A broad overview of various classes of toxic agents will be presented in the context of their exposure routes, disposition, toxicologic sequelae, and mechanisms of toxicity. This course is designed to provide a foundation for understanding the complex interactions between toxicants and biologic systems. The course is cross-listed at UTHealth School of Public Health (PH 2175). The venue of the course will be at the SPH.

GS13 1083 *Toxicology II: Toxic Agents*
3 sem. hrs.
Spring, annually. Prerequisites: Toxicology I (GS131063) preferred; permission of instructor. Smith, Mary Ann. Guided readings will provide the basis for in-class discussions on current topics in toxicology. The discussions include the historical context for our understanding of toxicant-induced adverse health effects. Class activities will be based on discussions of books designed for the lay public and the scientific literature on which the books are based. Principle mechanisms of toxicity as they relate to the understanding of environmentally-induced disease form the framework for the course. In-depth reviews of various classes of environmental contaminants and their adverse health effects will be presented. The course is cross-listed at UTHealth School of Public Health (PH 2177). The venue of the course will be at the SPH.

GS13 1111 *Case Studies in Drug Development.*
2 sem. hrs.
Spring, odd-numbered years. Prerequisites: None. An, Zhiqiang. This course will introduce students to the basic principles of drug discovery and development, including how such research is conceived, conducted, evaluated, explained to patients, and applied to patient care. Students will then apply these principles to analyze and discuss specific and current drug discovery and development projects both at UTHealth and at pharmaceutical companies. These cases will each have associated questions to be explored so students may learn to identify optimal patient targets for new drugs, while ensuring the safety of their subjects. Each discussion will include issues of science, ethics, conflict of interest, and intellectual property.

COURSE OFFERINGS IN NEUROSCIENCE

GS14 1021 *Current Topics in Neurobiology of Disease.*
1 sem. hr.
Fall, annually. Prerequisite: None. Byrne, John. Grading System: Pass/Fail. This course is an integrated approach to neurological diseases, which includes background information as well the diagnosis, the treatment, and the biological mechanisms of the diseases under study. The course is open to graduate and medical students, postdoctoral fellows, and residents.

GS14 1022 *Theory, Content, and Execution in Cognitive Neuroscience.*
2 sem. hrs.
Fall, Spring, Summer, annually. Prerequisite: Consent of instructor. Sereno, Anne B.; Wright, Anthony A. This course is designed to provide students with the skills necessary to become successful cognitive neuroscientists. Students will receive instruction in designing experiments.
and analyzing data, selecting research topics, relating theory to their work, and how to stay
up-to-date on current research. Students will be instructed in making presentations including
PowerPoint, handouts, and effective use of white board, and will be given feedback by faculty
and fellow students following their presentations. Students can register for the course multiple
times during their graduate careers. Among topics covered each term will include: comparative
cognition, evolution of behavior, cognitive modules, brain disorders including neurologic,
developmental, and psychiatric disorders, voluntary and reflexive orienting, perception, spatial
attention, feature-selective attention, item-specific learning, if-then rule learning, relational
learning, abstract concept learning, familiarity memory, recollective memory, what-where-when
memory, episodic memory, and working memory. These issues will be thoroughly discussed
during the Theory, Content, and Execution in Cognitive Neuroscience I, II, & III courses. The
particular combinations of issues in any one of these courses will vary depending upon the
background and needs of the students registered for the courses and the nature of the important
articles appearing in journals covering these areas.

GS14 1023 Advanced Cognitive Neuroscience. 3 sem. hrs.
Fall, odd numbered years. Prerequisite: Cognitive Neuroscience (GS14 1173) or permission of the
instructor. Sereno, Anne. This is an advanced course in Cognitive Neuroscience for upper level
(second year or above) graduate students. The course will require formal student presentations
of primary literature and focus on major and current issues in Cognitive Neuroscience. The
course is cross-listed at Rice (Neuroscience 501/Psychology 575).

GS14 1024 Systems Neuroscience 4 sem. hrs.
Spring, annually. Prerequisite: Permission of instructor. Dragoi, Valentin. This course covers
the key concepts in systems neuroscience that allow students to understand how individual
neurons and circuits process information and how they modulate behavior. Emphasis is placed
on the basic structure and function of cells and networks residing in the nervous system. The
course covers the major available techniques to examine the operation of neurons and networks
in vivo. The principles of functional neuroanatomy are presented by highlighting the main types
of neuronal circuits that constitute the building blocks of systems neuroscience. The neural
development section is intended to offer students insight into the early ‘shaping’ of neuronal
circuits as computational units. An important concept in systems neuroscience is the fact that
information is processed in a hierarchical manner. Covering this issue will allow students to learn
about the different stages of cortical processing that constitute the foundations of cognition.
Finally, a fundamental property of neurons and circuits, i.e., the capacity to adapt, is discussed
in the context of short and long-term plasticity, adaptation, and learning. The overall goal of this
course is to provide students with fundamental knowledge of the function, development, and
plasticity of neuronal circuits by emphasizing how neural circuits analyze sensory information,
form perceptions of the external worlds, make decisions, and execute movements.

GS14 1031 Advanced Seminar in Learning and Memory. 1 sem. hr.
All semesters, annually. Prerequisite: Permission of instructor. Wright, Anthony. An advanced
seminar intended for those familiar with the principles of learning and conditioning. Discussions
will center around major issues in learning and memory.

GS14 1043 Experimental Analysis of Behavior. 3 sem. hrs.
Summer annually. Prerequisite: Permission of instructor. Wright, Anthony. Comparative
learning, memory and cognition course covering a wide variety of animals, including humans.
Course format will be discussion of issues from chapters in Shettleworth and supplementary readings. Students will bring issues to discuss in class and will participate in discussion of issues raised by others. Grading will be based upon participation. Class meeting time will accommodate students’ schedules.

GS14 1051 Seminar in Neurobiology of Learning and Memory. 1 sem. hr.
All semesters, annually. Prerequisite: None. Byrne, John. This course has two major objectives. The first is to familiarize students with current research in learning and memory with particular emphasis on the cellular and molecular mechanisms. The second goal is to teach students how to give outstanding research seminars. Weekly 90-minute meetings involve alternate faculty and student presentations on current problems in the neurobiology of learning and memory. Faculty and student presentations cover recent articles from leading journals on the same topic. Students are instructed in the preparation of PowerPoint presentations, seminar organization, and techniques of oral presentation and are given feedback by faculty and fellow student following their presentations. Students can register for this course multiple times during their graduate career.

GS14 1063 Molecular Neurobiology. 3 sem. hrs.
Spring, annually. Prerequisite: None. Waxham, M. Neal. This course is a graduate-level treatment of the molecular, cellular, and biochemical events that underlie neuronal function. Emphasis is placed on the basic chemistry and biology of cells residing in the nervous system. The course also covers the structure and function of receptors, channels and pumps necessary for neuronal function and the neurochemistry of specific transmitter systems. The unique demand of neurons as specialized secretory cells is also covered. Finally, development and maturation of the central nervous system is taught at the cellular level along with a discussion of the diseases of the nervous system focusing on the molecular aspects of the disease process. The intent is to provide students with fundamental knowledge of the workings of cells generally and neurons specifically. This course is intended for Neuroscience students who have elected not to take Foundations of Biomedical Research (GS211017).

GS14 1072 Seminar in Molecular Neuroscience. 2 sem. hrs.
Spring, annually. Prerequisite: None. Bean, Andrew. This course covers a variety of topics generally focused on molecular mechanisms. Each semester will emphasize a particular research area. Examples of topic areas include development, receptor trafficking, neurotransmitter secretion, signaling, olfaction, and synaptic transmission. The objectives of the course are to teach critical thinking, effective presentation skills, logic/persuasive writing, and scientific proposal writing. Weekly meetings (2-hour) will have two short student presentations drawn from primary literature as well as written assignments. Students will be given feedback (from the instructor and peers) on their presentation content/style and written feedback on their written assignments. Each student will write five Specific Aims pages based on papers presented during sessions 2-6 and subsequently generate one scientific proposal in an iterative manner (with feedback from the instructor) based on one of the Aims pages on which they have received feedback. Proposals will be presented and defended in class and final grants will be submitted on the last day of class. Students will be graded based on their oral and written work as well as class participation. This course satisfies the GSBS Scientific Writing requirement.

GS14 1073 Visual Science I. 3 sem. hrs.
Spring, odd-numbered years. Prerequisite: Permission of instructor. Mills, Stephen. Visual Science I is a comprehensive introduction to visual neuroscience and the first steps in vision.
The anatomy, physiology, and pharmacology of retinal function will be discussed. Topics will include color vision, neurotransmitters, receptors, ion channels, rod and cone pathways, and adaptation. The course will emphasize phototransduction and retinal circuitry.

GS14 1081 Seminar in Neural Coding and Behavior. 1 sem. hr.
Fall, Spring and Summer, annually. Prerequisite: None. Dragoi, Valentin. It is increasingly being realized that neural systems encode information through the ensemble activity of large populations of neurons. The Seminar in Neural Coding and Behavior will review papers that address how neurons use population codes to represent information via the correlated activity of many neurons. We will address issues related to information coding by individual neurons, sparse coding schemes, population coding and decoding, and the relationship between the response properties of different brain systems and the natural statistics of their inputs. Finally, we will discuss how neurons encode and decode information to produce behavioral responses.

GS14 1091 Current Topics in Neural Stem Cell Research. 1 sem. hr.
Fall and Spring, annually. Prerequisites: Basic neuroscience and permission of instructor. Majumder, Sadhan. Scientific research on stem cells has opened an exciting new era in biological research and underscored the tremendous potential of stem cells in regenerative medicine and cancer. The objective of this course is to gain an advanced understanding of stem cell biology, with an emphasis on the potential therapeutic application of stem cells for neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and Huntington's disease, and neural cancers such as medulloblastoma and glioma. The introductory lecture by the course coordinator on the basic concepts of stem cell biology will be followed by student presentations and discussions of assigned journal articles intended to illuminate the cutting edge of neural stem cell research. Students will be evaluated based on their presentations, active participation in discussions, and attendance.

GS14 1113 Advanced Topics in Systems Neuroscience. 3 sem. hrs.
Spring, annually. Prerequisites: Advanced Neurobiology: Cellular and Molecular (GS141103), or permission of instructor. Dragoi, Valentin. Lecture and discussion course which explores current issues in the development of the nervous system, changes in structure and function associated with learning and experience, and current issues in human neurobiology. Topics to be covered include cellular development, sensory and motor systems development and plasticity, learning in vertebrates and invertebrates, and human attention, memory, and emotion.

GS14 1143 Cellular Neurophysiology. 3 sem. hrs.
Spring, annually. Prerequisite: Consent of the course coordinator. Beierlein, Michael. This course is a graduate level treatment of cellular neurophysiology. It is designed for first year students and will provide students with the basic tools for understanding electrical and chemical signaling in the nervous system. Students will learn about topics ranging from bioelectricity to synaptic transmission to plastic changes in synaptic strength that underlie learning and memory. This course is appropriate for students with an interest in neuroscience who are comfortable with the use of mathematical concepts to describe events that occur in the natural world. It is recommended that students have one semester of a calculus-based physical sciences course or one semester of a calculus-based life sciences course prior to taking this course.

GS14 1153 Theoretical Neuroscience: From Cells to Learning Systems 3 sem. hrs.
Fall, annually. Prerequisite: None. Shouval, Harel. This course will cover the biophysical foundations of neuronal cells. It will include a mathematical analysis of ion channels, action
potential propagation and generation as well as synaptic transmission. It will also describe reduced neuronal models, models of VI receptive fields and correlations between different cortical neurons.

GS14 1163 Neural Computation: Mathematics of Large Brain Networks and their Functions.

Spring, annually. Prerequisite: None. Shouval, Harel. This course develops the synaptic basis of learning and memory which will span from plasticity models to biophysical models of synaptic plasticity; and theoretical systems neuroscience which will include population coding, perception, Bayesian inference and probabilistic models. This course will be taught on the Rice University schedule.

GS14 1173 Cognitive Neuroscience.

Fall, annually. Prerequisite: Permission of the course coordinator. Wright, Anthony. This course is an introductory graduate-level overview of cognitive neuroscience. The course will cover basics in history, neuroanatomy, methods of cognitive neuroscience, sensation and perception, control of action, learning and memory, emotion, language, attention, drugs and cognition, impulsivity, cognitive control, social cognition, and neurobiology of disease. The intent is to provide students with fundamental knowledge of how the brain relates to cognitive functions and how this may help in understanding and treatment of human diseases that affect the central nervous system.

GS14 1181 Graduate Neuroanatomy.

Fall, annually. Prerequisite: None. Dragoi, Valentin. This course will provide a broad overview of the structure and function of the central nervous system. The general architecture of the nervous system and its functional systems are presented in a series of online exercises. The exercises allow the students to examine brain anatomy at a detailed view of the regional anatomy of the brain and spinal cord. MRIs of brain anatomy, as commonly presented in the scientific literature, will be presented using a computerized learning system.

GS14 1611 Current Topics in Neuroscience.

Fall, annually. Approval of the instructor. Nagayama, Shin. This course will give an overview of the wide range of research being carried out in the GSBS Neuroscience Graduate Program, and is open to all first year graduate students. Through informal discussions with a different NSGP faculty member each week, students will gain an appreciation for some of the big ideas and unsolved questions in Neuroscience research, and become familiar with the experimental and theoretical approaches being used to tackle those questions. This is a pass/fail course. Anyone with a strong interest in Neuroscience research is encouraged to take this class. There are no exams and no reading assignments, but students are expected to attend all lectures and to actively participate in class discussions.

GS14 1612 Biostatistics for Life Scientists.

Spring, annually. Grading System: Letter Grades (A, B, C, F). Prerequisite: Consent of instructor. Ribelayga, Christophe. This is an entry-to-intermediate level course aimed at scientists in the life sciences. During the first half of the semester, the course will introduce students to the basic concepts and statistical tests that are routinely encountered in analyzing scientific data in designed experiments, as opposed to the analysis of clinical or epidemiological type data. Following an introduction to probability, students will learn what statistical tests are appropriate and how to run them. Emphasis is on intelligent usage rather than mathematical formality.
Standard tests such as t, z, chi squared, ANOVA and regression analyses will be learned, as well as how power analyses and calculating sample size is performed. During the second half of the semester, advanced topics in life sciences, including Poisson distributions, clustering methods and multidimensional analyses will be included. Another goal of this course will be to build familiarity with the basic R toolkit for statistical analysis and graphics.

OTHER COURSE OFFERINGS

GS21 1011 Seminars in Clinical Cancer Research. 1 sem. hr.
Fall, annually. Prerequisite: None. Tsimberidou, Apostolia. This course is designed to extend students’ knowledge in the treatment of cancer by examining topics in cancer therapy development. The course will introduce concepts in clinical research trial design including the design of Phase I, II, and III clinical trials. Research ethics, data analysis, and new strategies in clinical trial design such as adaptive randomization will be covered. Finally, a broad overview of cancer biology and innovative treatment strategies will be discussed. Seminars in Clinical Cancer Research is a companion seminar series to Translational Sciences: Bench to Bedside and Back (GS211232) and Translational Cancer Research (GS211613). It is recommended, but not mandatory, that students taking Seminars in Clinical Cancer Research also take Translational Sciences: Bench to Bedside and Back (GS211232) or Translational Cancer Research (GS211613).

GS21 1014 Design and Management of Clinical Trials. 4 sem. hrs.
Fall and Spring, annually. Minimum prerequisite: Bachelor's degree. Buzdar, Aman. This course will teach the basic research concepts and principles that underlie the design and actual day-to-day conduct of clinical trials using examples primarily from cancer trials. Topics include the nature of disease and its impact on research protocol design, appropriate statistics to use, and medical terminology frequently encountered in clinical research; methods to monitor human subjects’ response to treatment including imaging, molecular diagnostics, and interactions and monitoring of clinical research laboratories; rules and regulations (including OHRP, FDA, and state), ethics, and human subjects training needed for clinical trials. In addition to 21 hours of lecture, the student will participate in two of three available on-site practicums (Regulatory and Ethical Concepts in Human Subjects Research; Clinical Trial Management; Data Management in Cancer Clinical Trials). Each practicum requires 24 hours of participation.

GS21 1017 Foundations of Biomedical Research. 7 sem. hrs.
Fall, annually. First-year GSBS students only (others by permission of instructor). Swindell, Eric. This course provides incoming graduate students with a broad overview of modern biomedical sciences, spanning historical perspectives to cutting edge approaches. The course combines traditional didactic lectures and interactive critical thinking and problem solving exercises to provide students with a strong background in fundamental graduate-level topics including genetics, molecular and cellular biology, biochemistry, physiology, developmental biology and biostatistics. This is the Core Course which fulfills the GSBS Breadth requirement.

GS21 1018 Foundations of Biomedical Research for Quantitative Students. 7 sem. hrs.
Fall, annually. Prerequisite: None, but permission from Dr. Mattox is required. Enrollment is limited to GSBS first-year and second-year students who will pursue the quantitative degree track. Swindell, Eric. This course will provide incoming graduate students with a broad overview of modern biomedical sciences, spanning historical perspectives to cutting edge approaches.
The course combines traditional didactic lectures and interactive critical thinking and problem solving exercises to provide students with a strong background in fundamental graduate-level topics including genetics, molecular and cellular biology, biochemistry, physiology, developmental biology and biostatistics. This is the GSBS Core Course which will be graded pass/fail and together with Introduction to Biostatistics and Clinical Trials (GS011033) fulfills the GSBS Breadth requirement for quantitative-track students.

GS21 1031 **Seminars in Clinical Cancer Treatment.**
1 sem. hr.

Spring, annually. Prerequisite: None. Tsimberidou, Apostolia. This seminar course is designed to provide a broad overview of patient-oriented research in oncology. The course will provide a preliminary introduction to the main type of clinical research trials in a variety of modalities such as surgery, radiation, and chemotherapy. The course will focus on specific tumor types and molecular subsets, and examine how new treatment modalities are developed in the clinical setting as well as provide a foundation of knowledge in conventional versus experimental therapy. Issues related to study design, sample size, and translational correlates will also be discussed. Seminars in Clinical Cancer Treatment is a companion seminar series to Human Protocol Research (GS211132). It is recommended, but not mandatory, that students taking Seminars in Clinical Cancer Treatment (GS211031) also take Human Protocol Research (GS211132).

GS21 1041 **Topics in Clinical and Translational Sciences.**
1 sem. hr.

Fall and Spring, annually. Prerequisite: None. Norris, Steven. Translational research represents the dynamic interface between basic research and medical practice, in which each field provides vital information to the other. The purpose of this course is to introduce students to the concepts of translational research, and its application to both improved health care and enhanced understanding of biologic processes. In a weekly seminar setting, experts in a variety of fields (such as microbiology/infectious diseases, cardiac surgery, gene therapy, drug development, and radiology/radiation physics) will present their views of the translational research process, followed by group discussion. Students will prepare brief oral presentations in an area of translational research and discuss them in class.

GS21 1051 **The Ethical Dimensions of the Biomedical Sciences.**
1 sem. hr.

Fall, annually. Prerequisite: None. Lunstroth, Rebecca; Cunha, Shane. This course is required for graduation from all degree programs at GSBS. Lunstroth, Rebecca; Cunha, Shane. This course is a systematic overview of the ethical concepts and traditions that are the foundation of biomedical science. The aim of the course is to provide students of the biomedical sciences with a framework to recognize, examine, and resolve ethical issues that may arise in their professional lives. These concepts will be examined through facilitated small group discussions of cases and exercises that involve ethical issues in the responsible conduct of biomedical research. Students will prepare to participate in these small group discussions by completing required reading assignments.

GS21 1053 **Law and Science.**
3 sem. hrs.

Spring, annually. Prerequisite: None. Hacker, Carl. This course introduces students with backgrounds largely in the sciences to three areas of law where the application of scientific disciplines continues to grow in importance. These areas include the law of toxic torts, administrative and regulatory law, and patent law. The students will learn how to interpret statutes, regulations, and judicial opinions, and will consider the role of scientists in formulating policy.
GS21 1061 Critical Thinking in Science. 1 sem. hr.
Summer, annually. Prerequisites: General knowledge of biology or biomedicine. Mattox, William. In this course students will develop skills for critically and professionally evaluating the significance, logic and presentation of scientific studies. Class sessions will emphasize student discussion and debate of topics including experimental design, the logical interpretation of results, scientific fraud, controversial results, dogma, and effective critique. Through class exercises students will gain understanding of the peer review process and will develop skills required to write critiques of manuscripts and research proposals.

GS21 1111 Statistical Genetics Journal Club. 1 sem. hr.
Fall and Spring, annually. Prerequisite: None; recommended concurrent graduate course in statistics and genetics. Scheet, Paul, coordinator; Shete, Sanjay and Huff, Chad, co-coordinators. The aim of the journal club is to facilitate students’ awareness of the field of statistical genetics. Topics include the following: methods for mapping genes, analyzing genome-wide association studies, the design and analysis of sequencing studies, gene-gene and gene-environment interactions, and statistical methods for emerging and high throughput data types. Particular emphasis is given to presentation skills, critical reading of articles, and asking questions. A strong interest in gaining practical experience in statistical and computational genetics is more important than specific background, although some graduate study in statistics or genetics will be helpful.

Spring, even-numbered years. Prerequisite: None. Chang, Shine, coordinator; Cameron, Carrie and Yates, Melinda, co-coordinators. This course addresses the growing demand for multi-disciplinary research in disease prevention. Going beyond traditional behavioral research, the bio-behavioral approach investigates the biological mechanisms underlying risk-related behaviors such as tobacco use, unhealthy diet, sedentary lifestyle, chronic stress, and social isolation and aims at understanding their role in determining cancer risk. The primary objective of this survey course will be to provide students with a greater understanding of the basic mechanisms involved in the complex interplay of genetic, neurobiological, psychological, and environmental factors in the initiation of smoking, dietary practices, exercise habits, and other healthful behaviors as well as the methodological approaches used in cancer prevention research. Other objectives include developing students’ appreciation of how different disciplines can contribute to cancer prevention as well as their awareness of the promise and potential pitfalls of multidisciplinary approaches. Topics include: (1) risk modeling; (2) bio-behavioral basis of nicotine dependence; (3) neurophysiological mechanisms of addiction; (4) psychophysiological response to exercise; (5) genetics of risk-taking behaviors; (6) psychological influences on immune function, subsequent cancer risk, and risk reduction techniques; (7) genetic determinants of behavior; and (8) psychophysiological, cognitive, and motivational mechanisms underlying persuasion in response to cancer prevention messages. Emerging areas of future research will be identified and discussed.

GS21 1121 Resources and Methods for Analysis of Patient-Derived Samples 1 sem. hr.
Summer, annually. Prerequisite: None. Kopetz, Scott. This course will provide the knowledge needed for the practical application of patient-oriented biological research. Over ten weeks, students will receive training on how to obtain, prepare, analyze, and interpret patient samples for research purposes. Students will attend ten 90-minute sessions in which lecturers with expertise in each topic will be educate them on the resources available at the institution, potential pitfalls, practical limitations, costs, and contacts for help.
GS21 1131 Nano Course in Biomedical Sciences. 1 sem. hr.
Fall, Spring and Summer, annually. Prerequisite: Permission of PI and Course Director. Ram, Prahlad. These will be a set of nano-courses with varying topics scheduled through the year. The courses will run from 3-10 days depending on the topic and the amount of project time needed. The class will require the student to present a written and oral report at the end of the course. Topics will vary in range from quantitative sciences to biological, covering all aspects of modern biomedical sciences.

GS21 1132 Human Protocol Research. 2 sem. hrs.
Spring, annually. Prerequisite: None. Janku, Filip. Human Protocol Research is an integrated, multidisciplinary course designed to provide students the necessary tools to devise, execute, and understand exemplary protocol research involving humans in clinical trials. Phase 0, I, II, III and IV trials will be discussed. Students participating in this course will gain an understanding of trial design, sample size and ethical/regulatory issues pertaining to clinical trials. The course is complementary and non-overlapping with Translational Sciences: Bench to the Bedside and Back (GS211232). Seminars in Clinical Cancer Treatment (GS211031) is a companion seminar series to Human Protocol Research. It is recommended, but not mandatory, that students taking Human Protocol Research also take Seminars in Clinical Cancer Treatment (GS211031).

GS21 1142 Writing Scientific Research Articles for Publication. 2 sem. hrs.
Summer, annually. Prerequisite: Consent of Instructor. Picus, Mark. This course presents the fundamentals of writing scientific research articles for publication and includes the basic structure of the research article, writing strategies, and ethical issues. Participants will improve scientific hypothesis-driven writing skills through discussion, readings, and numerous graded writings assignments; and they will go through the writing process, including revisions, of producing a draft of a scientific article.

GS21 1143 Oral Communication Skills for Scientists. 3 sem. hrs.
All semesters, annually. Prerequisite: Students must be in their second year or later of graduate school. Bratton, Shawn; Wood, Rick. The primary goal of this course is to train graduate students in the art of oral communication. The ability to effectively communicate one’s ideas to an audience, large or small, is critical for the future success of our students, whether they wish to pursue careers in academic research, teaching, industry, or government. Lectures will cover various aspects and types of oral communication including: 1) the basic principles of public speaking; 2) how to engage in non-scripted speaking; 3) how to prepare an excellent talk and provide constructive criticism; 4) how to lecture/give a talk outside one’s immediate area of expertise; 5) how to prepare a short talk for a national meeting; 6) how to deliver an “elevator speech”; 7) how to connect with and deliver a scientific talk to a lay audience; and 8) how to prepare a “chalk talk” for a job interview. Students will be videotaped so that every aspect of their deliveries can be self-critiqued and discussed with the class at large in order to improve upon such things as eye contact with the audience, hand gestures, use of pointers, vocal variation and volume, diction/enunciation, speed of delivery, clarity of slides (where relevant), etc. We anticipate that postdoctoral fellows within the program may also wish to audit the course in order to improve upon their communication skills and participate in discussions.

GS21 1151 Scientific Writing. 1 sem. hr.
Spring, annually. Prerequisite: 2nd year/pre-candidacy students. Swindell, Eric. The objectives of the course are to teach critical thinking and the fundamentals of proposal writing that will help students write candidacy exam proposals, grants, papers, meeting abstracts, and theses/
dissertations. Students will develop a research plan and write a 6-page grant proposal. Students will learn to edit and critique fellow students’ proposals, which will help prepare students for writing their candidacy exam proposals. Weekly meetings will consist of lectures from faculty/experts addressing how to compose grant proposal sections. In addition, students will meet weekly with faculty in small groups to critique/discuss research assignments during which students will be given feedback on their proposal content/style by faculty and fellow students. This course fulfills the GSBS Scientific Writing requirement.

GS21 1153 Hypothesis Design and Scientific Writing.
3 sem. hrs.

Fall, annually. Prerequisite: Students must be in their 2nd year or later years of graduate school. Richie, Ellen; Bartholomew, Blaine. The principal goal of this course is to teach graduate students the precise and rigorous writing skills needed to generate a competitive biomedical research grant application. Grant writing is an important skill regardless of whether a student plans to pursue a career in academic research, teaching, biotechnology or other areas. Lectures will cover basics of grant writing including but not limited to: 1) hypothesis design and specific aims, 2) significance and innovation, and 3) preliminary data and approach. Each student will write an F31 NIH grant application including all necessary documentation, e.g., biosketch, project summary, project narrative, etc. Mentors of students enrolled in the course will be required to provide in depth and timely feedback on their student's proposal. To ensure that students and mentors are aware of and prepared to meet their responsibilities in this course, they will be required to sign a form listing their respective commitments. Each student grant application will be subject to review by other students enrolled in the course as well as by two members of the EMC Program faculty. This course is taught at the UT-MDACC Science Park campus in Smithville, Texas. This course fulfills the GSBS Scientific Writing requirement.

GS21 1232 Translational Sciences: From Bedside to Bench and Back.
2 sem. hrs.

Fall, annually. Prerequisite: None. Kopetz, Scott. This is an integrated, multidisciplinary course designed to provide students the necessary tools to devise, fund, implement, and publish exemplary research involving patients or materials obtained from a human source. Students participating in this course will gain an understanding of the depth, complexity, and limitations of integrating laboratory and clinical research into investigations of human disease. After completion of the course, students will understand the importance of translational research: using laboratory findings to benefit human patients (bench to bedside) and investigating clinical observations in the laboratory (bedside to bench). This course is distinct from Human Protocol Research (GS211132); this course focuses on the interrelationship between laboratory-based and clinical research. A culture that fosters translational research of the highest quality requires laboratory and clinical investigators appreciate the scientific complexity of patient-oriented translational research.

GS21 1321 Seminar in Molecular Imaging: Design and Application of Targeted Agents.
1 sem. hr.

Fall, annually. Prerequisites: None. Azhdarinia, Ali. Molecular imaging is a multidisciplinary field that uses noninvasive methods to monitor the biochemistry in human diseases at the cellular level. Molecular imaging continues to grow as a field due in large part to advances in contrast agent development. Drug discovery techniques such as phage-display libraries and protein engineering have provided researchers with an abundance of unique, diseases-specific molecules that can be converted into diagnostic analogs for imaging. The objective of the proposed course is to introduce the fundamentals of molecular imaging and provide an in depth description of how the design of an imaging agent can improve how diseases such as cancer are detected, managed, and treated. Each lecture will be given by a leading expert in the
field and focus on 1) a clinically relevant class of imaging agents, 2) a description of the impact on patient care, and 3) presentation of emerging preclinical concepts with translational value. Topics will include the development of conventional imaging agents as well as novel approaches such as nanoparticle imaging, fluorescence-guided surgery, and multimodality imaging. The goal of the course will be to 1) give students a unique perspective of how chemical, biological, and pharmacological sciences impact cancer imaging, and 2) provide them with knowledge about the molecular imaging field which may be useful in their research and encourage future collaborations. Students will present an oral report at the end of the course.

GS21 1611
Topics in Molecular Medicine.
1 sem. hr.

Fall, Spring, and Summer, annually. Prerequisite: MD/PhD students only; permission of instructor. Milewicz, Dianna. The seminar will use selected topics in molecular medicine as a vehicle to introduce students to basic ideas of biomedical research, to the skills involved in evaluating the research literature and presenting data, and to the interplay between the research laboratory and the problems of clinical medicine. Students will be expected to conduct literature reviews, make oral presentations of research papers, and participate in the discussions of each topic. The course is offered in the Fall, Spring, and Summer semester, and MD/PhD students are required to register for the course throughout their tenure in the Program except during the third and fourth years of Medical School when schedules for clinical rotations conflict with the weekly seminar.

GS21 1613
Translational Cancer Research.
3 sem. hrs.

Spring, annually. Prerequisite: Cancer Biology (GS041063) preferred. Bast, Robert. This course will provide a primer for translational cancer research and will review concisely the current understanding of human cancer biology that is driving interest in targeted therapy and personalized management for prevention, detection and treatment of cancer. Techniques used to characterize human cancers at a cellular and molecular level will be described. Concepts, examples and alternative strategies to achieve individualized targeted therapy will be presented. Processes for developing drugs and biomarkers will be reviewed. Translation from bench to bedtime and back will be outlined for surgical oncology, radiation oncology, medical oncology and cancer imaging. Challenges for translation in cancer prevention will be considered. Infrastructure required for translational research will be reviewed, including tissue banks, biopsies, interventional radiology, molecular pathology, molecular imaging, bioinformatics, biostatistics, novel trial design and interactive databases. Objectives and paths for training and career development will be outlined as well as the sociology of team science. Interactions between Academe, Pharma, the NCI, FDA and Foundations will be explored. Finally, the course will analyze barriers to more rapid translation of cancer research to the clinic and community. This course consists of a two-hour lecture and one-hour seminar, weekly.

GS21 1622
Topics in Cancer Prevention Research.
2 sem. hrs.

Spring, odd-numbered years. Prerequisite: None. Chang, Shine; Cameron, Carrie. Given the projected shortage in 2020 of medical oncologists to care for cancer patients and survivors, the need for cancer prevention and control is urgent. Research and discovery of new and improved strategies for preventing cancer will be discussed, as well as the application of proven cancer prevention strategies in the clinic and community, and the ethical implications surrounding all of these efforts in cancer prevention and control. The objectives of this course are to provide students in the basic, behavioral, and population sciences with a strong foundation in conceptual models used for cancer prevention research and practice, the principal approaches used in promising areas of research, and new challenges and opportunities for future cancer prevention and control activities. The course will be taught by a team of MD Anderson faculty from various basic science, population science, and clinical disciplines.
MEMBERS OF THE FACULTY

The following is a roster of the active members of the GSBS Faculty. The first line of each entry includes the faculty member’s institution of primary appointment; the following abbreviations are employed:

For the institutions of The University of Texas Health Science Center at Houston:

UTHealth-GSBS ... Graduate School of Biomedical Sciences
UTHealth-MMS .. McGovern Medical School
UTHealth-SBMI .. School of Biomedical Informatics
UTHealth-SOD ... School of Dentistry
UTHealth-SPH .. School of Public Health
UTHealth-G ... Health Science Center-General Administration

For The University of Texas MD Anderson Cancer Center: MDACC

For Texas A&M University-Institute of Biosciences and Technology: TAMU-IBT

A more complete description of the faculty’s current research activities and publications, together with the projects available to students in their laboratories, may be obtained from the GSBS website.

Regular Members

Jun-ichi Abe, Cardiology, MDACC. M.D., University of Yamagata, 1987; Ph.D., University of Tokyo, 1998.

Jeffrey K. Actor, Pathology & Laboratory Medicine, UTHealth-MS. Ph.D., University of Massachusetts, 1991.

Vahid Afshar-Kharghan, Pulmonary Medicine, MDACC. M.D., Hacettepe University, 1991.

Gheath Al-Atrash, Stem Cell Transplantation & Cellular Therapy, MDACC. D.O., Ph.D., University of North Texas Health Science Center, 2002.

Margarida Albuquerque Almeida Santos, Epigenetics and Molecular Carcinogenesis, MDACC. Ph.D., University of Lisbon School of Sciences, 2007.

Joseph L. Alcorn, Jr., Pediatrics, UTHealth-MS. Ph.D., University of Texas at Dallas, 1988.

C. Marcelo Aldaz, Epigenetics and Molecular Carcinogenesis, MDACC. M.D., University of Buenos Aires, 1980.

James P. Allison, Immunology, MDACC. Ph.D., University of Texas at Austin, 1974.

Hesham M. Amin, Hematopathology, MDACC. M.D., Cairo University Faculty of Medicine, 1982.

Michael Andreeff, Leukemia, MDACC. M.D., University of Heidelberg Medical School, 1968; Ph.D., University of Heidelberg Medical Faculty, 1976.
Cesar A. Arias, Internal Medicine-Infectious Diseases, UTHealth-MS. M.D., Universidad El Bosque, 1992; Ph.D., University of Cambridge, 2000.

Michalis Aristophanous, Radiation Physics, MDACC. Ph.D., University of Chicago, 2008.

Banu Arun, Breast Medical Oncology and Clinical Cancer Prevention, MDACC. M.D., University of Istanbul Medical School, 1990.

Swathi Arur, Genetics, MDACC. Ph.D., All India Institute for Medical Sciences, 2002.

Keith A. Baggerly, Bioinformatics & Computational Biology, MDACC. Ph.D., Rice University, 1994.

Jennifer Bailey, Internal Medicine – Gastroenterology, UTHealth-MS. Ph.D., University of Nebraska Medical Center, 2009.

Veerabhadran Baladandayuthapani, Biostatistics, MDACC. Ph.D., Texas A&M University, 2005.

James A. Bankson, Imaging Physics, MDACC. Ph.D., Texas A&M University, 2001.

Chandra Bartholomeusz, Breast Medical Oncology, MDACC. M.D., University of Zambia, 1986; Ph.D., UTHealth GSBS, 2004.

Blaine Bartholomew, Epigenetics and Molecular Carcinogenesis, MDACC. Ph.D., University of California, Davis, 1988.

Michelle C. Barton, Epigenetics and Molecular Carcinogenesis, MDACC. Ph.D., University of Illinois, 1989.

Andrew J. Bean, Neurobiology & Anatomy, UTHealth-MS. Ph.D., Yale University, 1990.

Sam Beddar, Radiation Physics, MDACC. Ph.D., University of Wisconsin, 1990.

Mark Bedford, Epigenetics and Molecular Carcinogenesis, MDACC. Ph.D., Weizmann Institute of Science, 1996.

Richard R. Behringer, Genetics, MDACC. Ph.D., University of South Carolina, 1986.

Jennifer E. “Piper” Below, Epidemiology & Disease Control, UTHealth-SPH. Ph.D., University of Chicago, 2011.

Laura Beretta, Molecular & Cellular Oncology, MDACC. Ph.D., University of Paris 6, 1989.

Chantale Bernatchez, Melanoma Medical Oncology, MDACC. Ph.D., Laval University, 2004.

Elmer V. Bernstam, UTHealth-SBMI. M.D., University of Michigan, 1995.

Donald A. Berry, Biostatistics, MDACC. Ph.D., Yale University, 1971.

Krishna Bhat, Translational Molecular Pathology, MDACC. Ph.D., University of Illinois, 2001.

Pratip Bhattacharya, Cancer Systems Imaging, MDACC. Ph.D., California Institute of Technology, 2005.

Gerald F. Bills, Institute of Molecular Medicine, UTHealth-MS. Ph.D. - Virginia Polytechnic Institute & State University – 1985.

Eric A. Boerwinkle, Epidemiology, Human Genetics & Environmental Sciences, UTHealth-SPH & IMM, UTHealth-MS. Ph.D., University of Michigan, Ann Arbor, 1985.

Shawn B. Bratton, Epigenetics and Molecular Carcinogenesis, MDACC. Ph.D., University of Texas at Austin, 1999.

Ghislain Breton, Integrative Biology & Pharmacology, UTHealth-MS. Ph.D., University of Quebec, Montreal, 2004.

Russel R. Broaddus, Pathology, MDACC. M.D., Ph.D., UTHealth-MS, UTHealth-GSBS, 1994.

L. Maximilian Buja, Pathology & Laboratory Medicine, UTHealth-MS. M.D., Tulane University School of Medicine, 1967.

Jan A. Burger, Leukemia, MDACC. M.D., Ph.D., Albert Ludwigs University School of Medicine, 1994.

Lauren A. Byers, Thoracic/Head & Neck Medical Oncology, MDACC. M.D., Baylor College of Medicine, 2003.

George A. Calin, Experimental Therapeutics, MDACC. M.D., “Carol Davila” University of Medicine and Pharmacy (Romania), 1992; Ph.D., “Carol Davila” University of Medicine and Pharmacy (Romania), 2000.

Phillip B. Carpenter, Biochemistry & Molecular Biology, UTHealth-MS. Ph.D., University of Illinois at Urbana-Champaign, 1994.

Shine Chang, Epidemiology, MDACC. Ph.D., University of North Carolina-Chapel Hill, 1995.

Jichao Chen, Pulmonary Medicine, MDACC. Ph.D., Johns Hopkins University School of Medicine, 2006.

Junjie Chen, Experimental Radiation Oncology, MDACC. Ph.D., University of Vermont, 1993.

Ken Chen, Bioinformatics & Computational Biology, MDACC. Ph.D., University of Illinois at Urbana-Champaign, 2004.

Taiping Chen, Epigenetics and Molecular Carcinogenesis, MDACC. Ph.D., McGill University, 2000.

Yiwen Chen, Bioinformatics and Computational Biology, MDACC. Ph.D., University of North Carolina at Chapel Hill, 2007.

Xiaodong Cheng, Integrative Biology and Pharmacology, UTHealth-MS. Ph.D., University of Texas Medical Branch, 1994.

Raymond Cho, Psychiatry and Behavioral Sciences, UTHealth-MS. M.D., University of Toronto, 1993.

Sang Hyun Cho, Radiation Physics & Imaging Physics, MDACC. Ph.D., Texas A&M University, 1997.

Peter J. Christie, Microbiology & Molecular Genetics, UTHealth-MS. Ph.D., Cornell University, 1986.

Francois X. Claret, Systems Biology, MDACC. Ph.D., University of Lausanne, 1993.

Dianna D. Cody, Imaging Physics, MDACC. Ph.D., University of Michigan, 1987.

Francesca Cole, Epigenetics and Molecular Carcinogenesis, MDACC. Ph.D., Mount Sinai School of Medicine of New York University, 2003.

Laurence E. Court, Radiation Physics, MDACC. Ph.D., University of London, 1995.

Erik Cressman, Interventional Radiology, MDACC. M.D., Indiana University, 1999; Ph.D., University of Utah, 1989.

Michael A. Curran, Immunology, MDACC. Ph.D., Stanford University Medical School, 2001.

Stephen P. Daiger, Epidemiology, Human Genetics & Environmental Sciences, UTHealth-SPH. Ph.D., Stanford University, 1976.

Radbod Darabi, IMM, UTHealth-MS. M.D., Ph.D., Iran University of Medical Sciences, 2005; Zaheden University of Medical Sciences, 1997.

Michael A. Davies, Melanoma Medical Oncology and Systems Biology, MDACC. M.D., Ph.D., UTHealth-MS and UTHealth GSBS, 2001.

R. Eric Davis, Lymphoma & Myeloma, MDACC. M.D., Medical University of South Carolina, 1984.

Nicholas R. De Lay, Microbiology & Molecular Genetics, UTHealth-MS. Ph.D., University of Illinois at Urbana-Champaign, 2007.

Sharon Y.R. Dent, Epigenetics and Molecular Carcinogenesis, MDACC. Ph.D., Rice University, 1986.
Ronald A. DePinho, **Cancer Biology**, MDACC. M.D., Albert Einstein College of Medicine, 1981.

Carmen W. Dessauer, **Integrative Biology & Pharmacology**, UTHealth-MS. Ph.D., Louisiana State University, 1993.

Burton Dickey, **Pulmonary Medicine**, MDACC. M.D., University of Connecticut, 1980.

Ethan Dmitrovsky, **Thoracic/Head & Neck Medical Oncology and Cancer Biology**, MDACC. M.D., Cornell University Medical College, 1980.

Kim-Anh Do, **Biostatistics**, MDACC. Ph.D., Stanford University, 1990.

Giulio F. Draetta, **Molecular & Cellular Oncology and Genomic Medicine**, MDACC. M.D., University of Naples Medical School, 1981; Ph.D., University of Naples Medical School, 1985.

Guangwei Du, **Integrative Biology & Pharmacology**, UTHealth-MS. Ph.D., Peking Union Medical College, 1999.

Herbert L. DuPont, **Epidemiology**, Human Genetics & Environmental Sciences, SPH. M.D., Emory University School of Medicine, 1965.

Madeleine Duvic, **Dermatology**, MDACC. M.D., Duke University, 1977.

George T. Eisenhoffer, **Genetics**, MDACC. Ph.D., The University of Utah, 2008.

Scott E. Evans, **Pulmonary Medicine**, MDACC. M.D., UTHSC/San Antonio, 1999.

Walid Fakhouri, **Diagnostic & Biomedical Sciences**, UTHealth – SOD. Ph.D., Hohenheim University, 2002.

Zhen Fan, **Experimental Therapeutics**, MDACC. M.D., Shanghai Medical University, 1985.

Bingliang Fang, **Thoracic & Cardiovascular Surgery**, MDACC. M.D., Zhejiang Medical University, 1982; Ph.D., Hamburg University Institute/Human Genetics, 1989.

Mary Farach-Carson, **Diagnostic and Biomedical Sciences**, UTHealth – SOD. Ph.D., Medical College of Virginia, 1982.

Daniel J. Felleman, **Neurobiology & Anatomy**, UTHealth-MS. Ph.D., Vanderbilt University, 1981.

Isaiah J. Fidler, **Cancer Biology**, MDACC. D.V.M., Oklahoma State University, 1963; Ph.D., University of Pennsylvania, 1970.

Myriam Fornage, IMM, UTHealth-MS. Ph.D., UTHealth-GSBS, 1996.

Peter Friedl, Genitourinary Medical Oncology, MDACC. M.D., University of Bochum, 1992; Ph.D., McGill University, 1996.

Yun-Xin Fu, Biostatistics, UTHealth-SPH. Ph.D., Reading University, 1988.

David T. Fuentes, Imaging Physics, MDACC. Ph.D., University of Texas at Austin, 2008.

Juan Fueyo-Margareto, Neuro-Oncology, MDACC. M.D., University Autonomous of Barcelona (Spain), 1984.

Clifton David Fuller, Radiation Oncology, MDACC. M.D., UTHSC-San Antonio, 2006; Ph.D., UTHSC-San Antonio, 2011.

Andrew Futreal, Genomic Medicine, MDACC. Ph.D. University of North Carolina-Chapel Hill, 1993.

Michael J. Galko, Genetics, MDACC. Ph.D., University of California, San Francisco, 1999.

Gary E. Gallick, Genitourinary Medical Oncology, MDACC. Ph.D., University of Illinois at Urbana, 1981.

Boyi Gan, Experimental Radiation Oncology, MDACC. Ph.D., Cornell University, 2006.

Varsha Gandhi, Experimental Therapeutics, MDACC. Ph.D., Delhi University, 1980.

Guillermo Garcia-Manero, Leukemia, MDACC. M.D., Faculty of Medicine, University of Zaragoza, 1991.

Danielle A. Garsin, Microbiology & Molecular Genetics, UTHealth-MS. Ph.D., Harvard University, 1999.

Yong-Jian Geng, Internal Medicine - Cardiology, UTHealth-MS. M.D., Suzhou Medical College, 1982; Ph.D., Gothenburg University, 1994.

Filippo Giancotti, Cancer Biology, MDACC. M.D., Ph.D., University of Torino, 1981 (M.D.) and 1988 (Ph.D.).

Don L. Gibbons, Thoracic, Head/Neck Oncology and Molecular & Cellular Oncology, MDACC. M.D., Ph.D., Albert Einstein College of Medicine, 2004.

Kent A. Gifford, Radiation Physics, MDACC. Ph.D., UTHealth-GSBS, 2004.

Sharon Giordano, Health Services Research, MDACC. M.D., Johns Hopkins University, 1996.

Andrew B. Gladden, Genetics, MDACC. Ph.D., University of Pennsylvania, 2005.

David G. Gorenstein, NanoMedicine and Biomedical Engineering, UTHealth-MS. Ph.D., Harvard University, 1969.

Alemayehu A. Gorfe, Integrative Biology & Pharmacology, UTHealth-MS. Ph.D., University of Zurich, 2003.

Elizabeth A. Grimm, Melanoma Medical Oncology, MDACC. Ph.D., University of California at Los Angeles School of Medicine, 1979.

David R. Grosshans, Radiation Oncology, MDACC. M.D., Ph.D., University of Colorado Health Science Center, 2002 (M.D.) and 2004 (Ph.D.).

Jian Gu, Epidemiology, MDACC. Ph.D., Baylor College of Medicine, 1998.

Leng Han, Biochemistry and Molecular Biology, UTHealth-MS. Ph.D., Chinese Academy of Sciences, 2010.

Craig L. Hanis, Epidemiology, Human Genetics & Environmental Sciences, UTHealth-SPH. Ph.D., University of Michigan, 1981.

Glen Traver Hart, Bioinformatics and Computational Biology, MDACC. Ph.D, University of Texas at Austin, 2008.

Barrett R. Harvey, IMM, UTHealth-MS. Ph.D., University of Texas at Austin, 2003.

Jacoba Heijnen, Symptom Research, MDACC. Ph.D., Universite Pierre et Marie Curie, 1982.

John V. Heymach, Thoracic/Head & Neck Medical Oncology, MDACC. Ph.D., Stanford University Medical School, 1996; M.D., Stanford University Medical School, 1998.

Diane L.M. Hickson-Bick, Pathology & Laboratory Medicine, UTHealth-MS. Ph.D., Baylor College of Medicine, 1993.

James E. Hixson, Epidemiology, Human Genetics & Environmental Sciences, UTHSC-SFHP. Ph.D., University of Michigan, 1983.

Brian P. Hobbs, Biostatistics, MDACC. Ph.D., University of Minnesota, 2010.

Magnus Höök, Center for Infectious and Inflammatory Diseases, TAMU-IBT. Ph.D., University of Uppsala, 1974.

Rebecca M. Howell, Radiation Physics, MDACC. Ph.D., UTHSC/San Antonio, 2005.

Peng Huang, Translational Molecular Pathology, MDACC. M.D., Zhongshan Medical College, 1982; Ph.D., UTHCS-SFHP, 1990.

Suyun Huang, Neurosurgery, MDACC. M.D., Anhui Medical University, 1985; Ph.D., UTHCS-GSBS, 1997.

Xuelin Huang, Biostatistics, MDACC. Ph.D., University of Michigan, 2002.

Johnny Huard, Orthopaedic Surgery, UTHCS-MS. Ph.D., Laval University, 1993.

Chad Huff, Epidemiology, MDACC. Ph.D., University of Utah, 2008.

Vicki Huff, Genetics, MDACC. Ph.D., University of Michigan, 1987.

Mien-Chie Hung, Molecular & Cellular Oncology, MDACC. Ph.D., Brandeis University, 1983.

Robert L. Hunter, Jr., Pathology & Laboratory Medicine, UTHCS-MS. M.D., Ph.D., University of Chicago, 1965, 1969.

Patrick Hwu, Melanoma Medical Oncology, MDACC. M.D., Medical College of Pennsylvania, 1987.

Geoffrey S. Ibbott, Radiation Physics, MDACC. Ph.D., Colorado State University, 1993.

Jin Seon Im, Stem Cell Transplantation and Cellular Therapy, MDACC. M.D., Albert Einstein College of Medicine, 2009; Ph.D., The University of Arizona, 1999.

Chinnaswamy Jagannath, Pathology & Laboratory Medicine, UTHCS-MS. Ph.D., University of Madras, 1984.

David G. Johnson, Epigenetics and Molecular Carcinogenesis, MDACC. UT Southwestern Medical Center, 1991.

Faye M. Johnson, Thoracic/Head & Neck Medical Oncology, MDACC. M.D., Ph.D., UTHealth-MS and UTHealth-GSBS, 1996.

Randy L. Johnson, Cancer Biology, MDACC. Ph.D., Columbia University, 1991.

Goo Jun, Epidemiology, Human Genetics & Environmental Sciences, UTHealth-SPH. Ph.D., The University of Texas at Austin, 2010.

Raghu Kalluri, Cancer Biology, MDACC. Ph.D., University of Kansas Medical Center, 1992; M.D., Brown University, 2009.

Heidi B. Kaplan, Microbiology & Molecular Genetics, UTHealth-MS. Ph.D., Cornell University, 1986.

Harry Karmouty-Quintana, Biochemistry and Molecular Biology, UTHealth-MS. Ph.D., King’s College London, 2006.

Fred. K. Kasper, Orthodontics, UTHealth-SOD. Ph.D., Rice University, 2006.

Annemieke Kavelaars, Symptom Research, MDACC. Ph.D., Utrecht University, 1990.

Khandan Keyomarsi, Experimental Radiation Oncology, MDACC. Ph.D., University of Southern California-Los Angeles, 1989.

Nayun Kim, Microbiology & Molecular Genetics, UTHealth-MS. Ph.D., University of Chicago, 2000.

Theresa M. Koehler, Microbiology & Molecular Genetics, UTHealth-MS. Ph.D., University of Massachusetts, 1987.

Mikhail G. Kolonin, IMM, UTHealth-MS. Ph.D., Wayne State University, 2000.
Yoshihiro Komatsu, Pediatrics, UTHealth-MS. Ph.D., Kumamoto University, 2004.

Bruce Kone, Internal Medicine – Renal Diseases and Hypertension, UTHealth-MS. M.D., University of Florida, 1983.

Marina Konopleva, Leukemia and Stem Cell Transplantation, MDACC. M.D., 1st Pavlov Medical Institute, 1990;

E. Scott Kopetz, Gastrointestinal Medical Oncology, MDACC. M.D., Johns Hopkins School of Medicine, 2001; Ph.D., UTHealth-GSBS, 2009.

Anne-Marie Krachler, Microbiology and Molecular Genetics, UTHealth – MS. Ph.D., University of York, 2010.

Ralf Krahe, Genetics, MDACC. Ph.D., UTHealth-GSBS, 1995.

Sunil Krishnan, Radiation Oncology, MDACC. M.D., Christian Medical College, 1993.

Rajat J. Kudchadker, Radiation Physics, MDACC. Ph.D., University of Missouri, 1996.

Jonathan M. Kurie, Thoracic/Head & Neck Medical Oncology, MDACC. M.D., East Carolina University, 1983.

Scott D. Lane, Psychiatry & Behavioral Sciences, UTHealth-MS. Ph.D., Auburn University, 1995.

Frederick F. Lang, Neurosurgery, MDACC. M.D., Yale University School of Medicine, 1988.

Alexander J. F. Lazar, Pathology, MDACC. M.D., Ph.D., UT Southwestern Medical Center, 2000.

Valerie S. LeBleu, Cancer Biology, MDACC. Ph.D., Harvard University, 2009.

Cheng Chi Lee, Biochemistry & Molecular Biology, UTHealth-MS. Ph.D., University of Otago (New Zealand), 1986.

Dung-Fang Lee, Integrative Biology & Pharmacology, UTHealth-MS. Ph.D., The University of Texas Graduate School of Biomedical Sciences at Houston, 2008.

J. Jack Lee, Biostatistics, MDACC. Ph.D., University of California at Los Angeles, 1989.

Ju-Seog Lee, Systems Biology, MDACC. Ph.D., The University of Texas at Dallas, 1999.

Min Gyu Lee, Molecular & Cellular Oncology, MDACC. Ph.D., Johns Hopkins School of Medicine, 2004.
Mong-Hong Lee, Molecular & Cellular Oncology, MDACC. Ph.D., University of Pittsburgh, 1993.

Dorothy E. Lewis, Internal Medicine-Infectious Diseases, UTHSC-MS. Ph.D., University of Arizona, 1978.

Lei Li, Experimental Radiation Oncology, MDACC. Ph.D., Beijing Medical University, 1989.

Yi-Ping Li, Integrative Biology & Pharmacology, UTHSC-MS. Ph.D., Texas Tech University Health Science Center, 1990.

Han Liang, Bioinformatics & Computational Biology, UTHSC-MS. Ph.D., Case Western Reserve University, 2004.

Ziyin Li, Microbiology & Molecular Genetics, UTHSC-MS. Ph.D., Institute of Genetics, Chinese Academy of Science, 2000.

Chunru Lin, Molecular & Cellular Oncology, MDACC. Ph.D., Georgia State University, 2006.

Steven H. Lin, Radiation Oncology, MDACC. M.D., Ph.D., University of California, Irvine, 2004.

Xin Lin, Molecular & Cellular Oncology, MDACC. Ph.D., UTHSC-GSBS, 1995.

Jun Liu, Pathology & Laboratory Medicine, UTHSC-MS. Ph.D., Chinese Academy of Sciences, 1998.
Qingyun Liu, IMM, UTHealth-MS. Ph.D., Yale University, 1990.

Suyu Liu, Biostatistics, MDACC. Ph.D., UTHealth SPH, 2012.

Xiaoming Liu, Epidemiology, Human Genetics, and Environmental Sciences, UTHealth SPH. Ph.D., UTHealth GSBS, 2006.

Ying Liu, Neurosurgery and IMM, UTHealth-MS. M.D., Peking University, 1996; Ph.D., University of Utah, 2003.

Gregory A. Lizée, Melanoma Medical Oncology and Immunology, MDACC. Ph.D., University of British Columbia, 2001.

Craig D. Logsdon, Cancer Biology, MDACC. Ph.D., University of California-Berkeley, 1981.

Gabriel Lopez-Berestein, Experimental Therapeutics, MDACC. M.D., Universidad de Navarra, 1976.

Michael Lorenz, Microbiology & Molecular Genetics, UTHealth-MS. Ph.D., Duke University, 1997.

Guillermina Lozano, Genetics, MDACC. Ph.D., Rutgers University, 1986.

Karen H. Lu, Gynecologic Oncology and Reproductive Medicine, MDACC. M.D., Yale University, 1991.

Xiongbin Lu, Cancer Biology, MDACC. Ph.D., Shanghai Institute of Biochemistry, 1998.

Li Ma, Experimental Radiation Oncology, MDACC. Ph.D., Cornell University, 2006.

Qing Ma, Stem Cell Transplantation, MDACC. Ph.D., Thomas Jefferson University, 1995.

Anirban Maitra, Pathology, MDACC. M.B.B.S., All India Institute of Medical Sciences, 1996.

Sadhan Majumder, Genetics, MDACC. Ph.D., New York University, 1985.

Sendurai A. Mani, Translational Molecular Pathology, MDACC. Ph.D., Indian Institute of Sciences, 1998.

William Margolin, Microbiology & Molecular Genetics, UTHealth-MS. Ph.D., University of Wisconsin-Madison, 1989.

David W. Marshak, Neurobiology & Anatomy, UTHealth-MS. Ph.D., University of California at Los Angeles, 1982.
Mary K. Martel, Radiation Physics, MDACC. Ph.D., Clark University, 1982.

Osama Mawlawi, Imaging Physics, MDACC. Ph.D., Columbia University, 1999.

Florence McAllister, Clinical Cancer Prevention, MDACC. M.D., National University of Rosario, 2000.

Kevin M. McBride, Epigenetics and Molecular Carcinogenesis, MDACC. Ph.D., Stony Brook University, 2000.

Nami McCarty, IMM, UTHealth-MS. Ph.D., Purdue University, 2000

Pierre D. McCrea, Genetics, MDACC. Ph.D., Yale University, 1987.

John S. McMurray, Experimental Therapeutics, MDACC. Ph.D., University of Houston, 1986.

John Mendelsohn, Institute for Personalized Cancer Therapy and Genomic Medicine, MDACC. M.D., Harvard Medical School, 1963.

Funda Meric-Bernstam, Investigational Cancer Therapeutics, MDACC. M.D., Yale University School of Medicine, 1991.

Dianna M. Milewicz, Internal Medicine – Medical Genetics, UTHealth-MS. M.D., Ph.D., UT Southwestern Medical School, 1984.

Seyed Javad M. Moghaddam, Pulmonary Medicine, MDACC. M.D., Shaheed Beheshti University of Medical Sciences, 1996.

Radhe Mohan, Radiation Physics, MDACC. Ph.D., Duke University, 1969.
Samuel C. Mok, Gynecologic Oncology and Reproductive Medicine, MDACC. Ph.D., The Chinese University of Hong Kong, 1987.

Jeffrey J. Molldrem, Stem Cell Transplantation, MDACC. M.D., University of Minnesota, 1990.

Kevin A. Morano, Microbiology & Molecular Genetics, UTHealth-MS. Ph.D., University of California-Davis, 1996.

Jeffrey S. Morris, Biostatistics, MDACC. Ph.D., Texas A&M University, 2000.

Barbara E. Murray, Internal Medicine – Infectious Diseases, UTHealth-MS. M.D., UT Southwestern Medical School, 1973.

Naoki Nakayama, IMM, UTHealth-MS. Ph.D., The University of Tokyo Graduate School of Science, 1987.

Honami Naora, Molecular and Cellular Oncology, MDACC. Ph.D., The Australian National University, 1994.

Vihang A. Narkar, IMM, UTHealth-MS. Ph.D., University of Houston College of Pharmacy, 2002.

Nicholas E. Navin, Genetics, MDACC. Ph.D., Stony Brook University, 2010.

Nora M. Navone, Genitourinary Medical Oncology, MDACC. M.D., University of Buenos Aires School of Medicine, 1981; Ph.D., University of Buenos Aires, 1989.

Sattva S. Neelapu, Lymphoma & Myeloma, MDACC. M.D., Jawaharlal Institute of Post-Graduate Medical Education and Research, 1991.

Jing Ning, Biostatistics, MDACC. Ph.D., Johns Hopkins University, 2008.

Steven J. Norris, Pathology & Laboratory Medicine, UTHealth-MS. Ph.D., University of California at Los Angeles, 1980.

Hope Northrup, Pediatrics, UTHealth-MS. M.D., Medical University of South Carolina, 1983.

Roza Nurieva, Immunology, MDACC. Ph.D., Pushchino State University, 1999.

Robert Orlowski, Lymphoma & Myeloma, MDACC. M.D., Yale University, 1990; Ph.D., Yale University, 1991.

Bulent Ozpolat, Experimental Therapeutics, MDACC. Ph.D., UTHealth GSBS, 2000.

Tinsu Pan, Imaging Physics, MDACC. Ph.D., University of Michigan, 1991.

Guang Peng, Clinical Cancer Prevention, MDACC. M.D., Tongji Medical University, 2002; Ph.D., University of South Carolina, 2005.

Helen Piwnica-Worms, Cancer Biology, MDACC. Ph.D., Duke University, 1984.

William Plunkett, Experimental Therapeutics, MDACC. Ph.D., University of Massachusetts, 1970.

Sean M. Post, Leukemia, MDACC. Ph.D., The University of Texas Health Science Center at San Antonio, 2003.

Kunal Rai, Genomic Medicine, MDACC. Ph.D., University of Utah, 2006.

Prahlad T. Ram, Systems Biology, MDACC. Ph.D., Tulane University, 1997.

Arvind Rao, Bioinformatics & Computational Biology, MDACC. Ph.D., University of Michigan, 2008.

Ellen R. Richie, Epigenetics and Molecular Carcinogenesis, MDACC. Ph.D., University of Texas at Austin, 1970.

Padmanee Sharma, *Genitourinary Medical Oncology*, MDACC. M.D., Ph.D., Pennsylvania State University, College of Medicine, 1998.

Xiaobing Shi, Epigenetics and Molecular Carcinogenesis, MDACC. Ph.D., Chinese Academy of Sciences, 2001.

Imad Shureiqi, Gastrointestinal Medical Oncology, MDACC. M.D., Damascus University, 1985.

Ferdinandos Skoulidis, Thoracic/Head & Neck Medical Oncology, MDACC. M.D., Aristotle University of Thessaloniki, 2000; Ph.D., University of Cambridge, 2010.

Laura A. Smith Callahan, Neurosurgery, UTHealth-MS. Ph.D., University of Michigan, 2008.

Jair C. Soares, Psychiatry & Behavioral Sciences, UTHealth-MS. M.D., University of Sao Paulo School of Medicine, 1990.

Konstantin Sokolov, Imaging Physics, MDACC. Ph.D., Moscow State University, 1992.

Min Sup Song, Molecular & Cellular Oncology, MDACC. Ph.D., Korea University, 2001.

Anil K. Sood, Gynecologic Oncology and Reproductive Medicine, MDACC. M.D., University North Carolina-Chapel Hill, 1991.

Claudio Soto, Neurology, UTHealth-MS. Ph.D., University of Chile, 1993.

Louise C. Strong, Genetics, MDACC. M.D., UT Medical Branch at Galveston, 1970.

Erik Sulman, Radiation Oncology, MDACC. M.D./Ph.D., Temple University, 2003.

Kai Sun, Institute of Molecular Medicine, UTHealth – MS. Ph.D., University of California-Riverside, 2005.

Shao-Cong Sun, Immunology, MDACC. Ph.D., Stockholm University, 1992.

John Tainer, Molecular and Cellular Oncology, MDACC. Ph.D., Duke University, 1982.

Cullen Taniguchi, Radiation Oncology, MDACC. Ph.D., Harvard Medical School, 2005; M.D., Harvard Medical School, 2008.
Ba-Bie Teng, IMM, UTHealth-MS. Ph.D., McGill University, 1987.

Uwe Titt, Radiation Physics, MDACC. Ph.D., Johann Wolfgang Goethe Universitat, 1994.

Mark Titus, Genitourinary Medical Oncology, MDACC. Ph.D., University of Washington, 1998.

Hung Ton-That, Microbiology & Molecular Genetics, UTHealth-MS. Ph.D., University of California at Los Angeles, 2000.

Qingchun Tong, IMM, UTHealth-MS and Internal Medicine. Ph.D., SUNY Downstate Medical Center, 2003.

Keila E. Torres, Surgical Oncology, MDACC. M.D., Ph.D., Albert Einstein College of Medicine, 2003.

Dat Tran, Pediatrics, UTHealth-MS. M.D., Tulane University- School of Medicine, 2001.

Naoto T. Ueno, Breast Medical Oncology, MDACC. M.D., Wakayama Medical College, 1989; Ph.D., UTHealth-GSBS, 1999.

Stephen E. Ullrich, Immunology, MDACC. Ph.D., Georgetown University, 1979.

Ambro van Hoof, Microbiology & Molecular Genetics, UTHealth-MS. Ph.D., Michigan State University, 1997.

Kartik Venkatachalam, Integrative Biology & Pharmacology, UTHealth-MS. Ph.D., University of Maryland School of Medicine, 2002.

Roeland Verhaak, Bioinformatics & Computational Biology, MDACC. Ph.D., Erasmus University Medical Center, 2006.

Eduardo Vilar-Sanchez, Clinical Cancer Prevention, MDACC. M.D., University Miguel Hernandez Medical School, 2002; Ph.D., University Miguel Hernandez, 2009.

Bin Wang, Genetics, MDACC. Ph.D., Baylor College of Medicine, 2000.

Huamin Wang, Pathology, MDACC. M.D, Tongji Medical University, 1987; Ph.D., UTHealth-GSBS, 1999.

Jing Wang, Bioinformatics & Computational Biology, MDACC. Ph.D., University of Manitoba, 1998.
Wenyi Wang, Bioinformatics & Computational Biology, MDACC. Ph.D., Johns Hopkins University, 2007.

Jennifer Wargo, Genomic Medicine & Surgical Oncology, MDACC. M.D., Medical College of Pennsylvania, 1998.

Stephanie S. Watowich, Immunology, MDACC. Ph.D., Northwestern University, 1990.

John N. Weinstein, Bioinformatics & Computational Biology, MDACC. M.D., Harvard Medical School, 1971; Ph.D., Harvard University, 1971.

Richard E. Wendt III, Imaging Physics, MDACC. Ph.D., Rice University, 1982.

Rick A. Wetsel, IMM, UTHealth-MS. Ph.D., The University of Texas Health Science Center at San Antonio, 1982.

Charles E. Willis, Imaging Physics, MDACC. Ph.D., University of Houston, 1984.

Ignacio I. Wistuba, Translational Molecular Pathology, MDACC. M.D., Austral University of Chile, 1985.

Kwong-Kwok Wong, Gynecologic Oncology and Reproductive Medicine, MDACC. Ph.D., The Chinese University of Hong Kong, 1990.

Jiaqian Wu, Neurosurgery and IMM, UTHealth-MS. Ph.D., Baylor College of Medicine, 2005.

Xiangwei Wu, Clinical Cancer Prevention, MDACC. Ph.D., Baylor College of Medicine, 1991.

Xifeng Wu, Epidemiology, MDACC. M.D., Shanghai Medical University, 1984; Ph.D., UTHealth-SPH, 1994.

Yang Xia, Biochemistry & Molecular Biology, UTHealth-MS. M.D., Hunan Medical University, 1992; Ph.D., UTHealth-GSBS, 1998.

Wa Xian, IMM, UTHealth-MS. Ph.D., UTHealth GSBS, 2002.
Keping Xie, Gastrointestinal Medical Oncology, MDACC. M.D., Zhenjiang Medical College, 1982; Ph.D., UTHealth-GSBS, 1995.

Momiao Xiong, Biostatistics, SPH. Ph.D., University of Georgia, 1993.

Yi Xu, Center for Extracellular Matrix Biology, TAMU-IBT. Ph.D., UTHealth-GSBS, 1998.

Jose-Miguel Yamal, Biostatistics, UTHealth-SPH. Ph.D., Rice University, 2007.

Jiusheng Yan, Anesthesiology & Perioperative Medicine, MDACC. Ph.D., Purdue University, 2004.

Jing Yang, Lymphoma & Myeloma, MDACC. Ph.D., Xiangya Medical School, 2002.

Liuqing Yang, Molecular & Cellular Oncology, MDACC. Ph.D., Georgia State University, 2006.

Cassian Yee, Melanoma Medical Oncology and Immunology, MDACC. M.D., University of Manitoba, 1986.

Haoqiang Ying, Molecular and Cellular Oncology, MDACC. M.D., Peking Union Medical College, 2000; Ph.D., Boston University School of Medicine, 2006.

M. James You, Hematopathology, MDACC. M.D., Zhejiang University School of Medicine, 1986; Ph.D., The University of Texas at Austin, 1997.

Ken Young, Hematopathology, MDACC. M.D., Zhejiang University School of Medicine, 1984; Ph.D., University of Lund School of Medicine, 1995.

Dihua Yu, Molecular & Cellular Oncology, MDACC. M.D., Capital Institute of Medicine, 1982; Ph.D., UTHealth-GSBS, 1991.

Ying Yuan, Biostatistics, MDACC. Ph.D., University of Michigan, 2005.

Tomasz Zal, Immunology, MDACC. Ph.D., Polish Academy of Sciences Institute of Immunology & Experimental Therapy, 1992.

Shuxing Zhang, Experimental Therapeutics, MDACC. Ph.D., University of North Carolina at Chapel Hill, 2005.

Xiaodong Zhang, Radiation Physics, MDACC. Ph.D., Ohio University, 2001.

Chengming Zhu, Immunology, MDACC. Ph.D., Baylor College of Medicine, 1997.

Michael Xi Zhu, Integrative Biology & Pharmacology, UTHealth-MS, Ph.D., University of Houston, 1991.

X. Ronald Zhu, Radiation Physics, MDACC. Ph.D., University of Utah, 1989.

Patrick A. Zweidler-McKay, Pediatrics, MDACC. M.D., Ph.D., Temple University, 1997.

Associate Members

Michael J. Akesson-Wassler, Center for Cardiovascular Research, UTHealth-MS. Ph.D., Uppsala University, 1992.

Ana M. Aparicio, Genitourinary Medical Oncology, MDACC. M.D., Universidad Autonoma de Madrid, 1995.

Myla Ashfaq, Pediatrics, UTHealth-MS. M.S., Stanford University, 2011.

Kumudha Balakrishnan, Experimental Therapeutics, MDACC. Ph.D., Madras University, 2001.

Peter Balter, Radiation Physics, MDACC. Ph.D., UTHealth-GSBS, 2003.

Sarah A. Bannon, Clinical Cancer Genetics, MDACC. M.S., Stanford University, 2010.

Geoffrey A. Bartholomeusz, Experimental Therapeutics, MDACC. Ph.D., University of Oklahoma, 1998.

Venkata Lokesh Battula, Leukemia, MDACC. Ph.D., Justus Liebig University, 2006.

Mikhail V. Bogdanov, Biochemistry & Molecular Biology, UTHealth-MS. Ph.D., Russian Academy of Sciences, 1989.

Laura D. Bover, Genomic Medicine and Immunology, MDACC. Ph.D., University of Buenos Aires, 1995.

Tina Marie Briere, Radiation Physics, MDACC. Ph.D., State University of New York at Albany, 1995.

Thomas A. Buchholz, Radiation Oncology, MDACC. M.D., Tufts University School of Medicine, 1988.

Aman U. Buzdar, Clinical Research and Breast Medical Oncology, MDACC. M.D., Nishtar Medical College, 1967.
Carrie A. Cameron, Epidemiology, MDACC. Ph.D., Rice University, 1990.

Scott B. Cantor, Health Services Research, MDACC. Ph.D., Harvard University, 1991.

Nathan Carlin, Center for Humanities & Ethics, UTHealth-MS. Ph.D., Rice University, 2009.

Rong Chen, Experimental Therapeutics, MDACC. Ph.D., UTHealth GSBS, 2002.

Thomas R. Cole, Center for Humanities & Ethics, UTHealth-MS. Ph.D., University of Rochester, 1981.

Molly S. Daniels, Clinical Cancer Genetics, UTHealth-MS. M.S., University of Cincinnati, 2002.

Courtney D. DiNardo, Leukemia, MDACC. M.D., University of Michigan, 2006.

Peter A. Doris, IMM, UTHealth-MS, Ph.D., University of California, Riverside, 1981.

Lee M. Ellis, Surgical Oncology & Cancer Biology, MDACC. M.D., University of Virginia School of Medicine, 1983.

William D. Erwin, Imaging Physics, MDACC. M.S., DePaul University, 1991

Zeev Estrov, Leukemia, MDACC. M.D., Tel-Aviv University, 1974.

Rick A. Finch, Veterinary Sciences, MDACC. Ph.D., Baylor College of Medicine, 1995.

Lara Friel, Obstetrics, Gynecology, and Reproductive Sciences, UTHealth-MS. Ph.D., Finch University of Health Sciences, 1999.

Gregory N. Fuller, Pathology, MDACC. Ph.D., UTHealth-GSBS, 1983; M.D., Baylor College of Medicine, 1987.
Song Gao, Radiation Physics, MDACC. Ph.D., Fudan University, 1995.

Jeffrey E. Gershenwald, Surgical Oncology, MDACC. M.D., Cornell University Medical College, 1990.

Fada Guan, Radiation Physics, MDACC. Ph.D., Texas A&M University, 2012.

Sonal Gupta, Pathology, MDACC. Ph.D., University of Illinois, 2007.

Stanley R. Hamilton, Pathology, MDACC. M.D., Indiana University School of Medicine, 1973.

David S. Hong, Investigational Cancer Therapeutics, MDACC. M.D., Albert Einstein College of Medicine, 1999.

Ping Hou, Imaging Physics, MDACC. Ph.D., University of Utah, 1993.

Ken-Pin Hwang, Imaging Physics, MDACC. Ph.D., Case Western Reserve University, 2002.

Filip Janku, Investigational Cancer Therapeutics, MDACC. M.D., Charles University, 1999; Ph.D., Charles University, 2007.

Milind Javle, Gastrointestinal Medical Oncology, MDACC. M.D., Grant Medical College, University of Bombay, 1991.

Cameron Jeter, Diagnostic and Biomedical Sciences, UTHealth – SOD. Ph.D., UTHealth-GSBS, 2010.

Jennifer L. Johnson, Radiation Physics, MDACC. M.S., University of Kentucky, 1997.

Jeri Kim, Genitourinary Medical Oncology, MDACC. M.D., University of Southern California, School of Medicine, 1993.

Jennifer M. Lemons, Pediatrics, UTHealth-MS. M.S., University of Cincinnati, 2011.

Chun Li, Cancer Systems Imaging, MDACC. Ph.D., Rutgers University, 1991.

Heng Li, Radiation Physics, MDACC. Ph.D., University of Virginia, 2006.

Tao Lin, Pathology & Laboratory Medicine, UTHealth-MS. D.V.M., Inner Mongolia Agriculture University, 1986.

Jennifer Litton, Breast Medical Oncology, MDACC. M.D., University of Massachusetts Medical School-Worcester, 2000.

Ho-Ling Anthony Liu, Imaging Physics, MDACC. Ph.D., The University of Texas Health Science Center at San Antonio, 2000.

Jinsong Liu, Pathology, MDACC. M.D., Shanghai Medical University, 1983; Ph.D., Case Western Reserve University, 1991.

Xinming Liu, Imaging Physics, MDACC. Ph.D., Xian Jiaotong University, 1996.

Rebecca Lunstroth, Center for Humanities & Ethics, UTHealth-SPH. M.A., University of Texas Medical Branch at Galveston, 2006.

Dershan Luo, Radiation Physics, MDACC. Ph.D., University of Michigan, 1991.

Sankar N. Maity, Genitourinary Medical Oncology, MDACC. Ph.D., University of Calcutta, 1991.

Emil Martin, Internal Medicine – Cardiovascular Medicine, UTHealth-MS. Ph.D., Institute of Molecular Genetics, Russian Academy of Science, 1993.

Adam D. Melancon, Radiation Physics, MDACC. Ph.D., UTHealth-GSBS, 2010.

David G. Menter, Gastrointestinal Medical Oncology, MDACC. Ph.D., Wayne State University, 1986.

Dragan Mirkovic, Radiation Physics, MDACC. Ph.D., State University of New York-Stony Brook, 1993.

Laura E. Mitchell, Epidemiology, Human Genetics & Environmental Sciences, SPH. Ph.D., Yale University, 1991.

Lauren N. Murphy, Obstetrics, Gynecology and Reproductive Sciences, UTH ealth-MS. M.S., UTH ealth-GSBS, 2009.

Aung Naing, Investigational Cancer Therapeutics, MDACC. Hacettepe University, 1997.

Scott D. Olson, Pediatric Surgery, UTH ealth-MS. Ph.D., Tulane University School of Medicine, 2007.

Lan V. Pham, Hematopathology, MDACC. Ph.D., UTH ealth-GSBS, 2009.

Sarina A. Piha-Paul, Investigational Cancer Therapeutics, MDACC. M.D., Louisiana State University Health Sciences Center, 2002; M.S., UTH ealth GSBS, 2010.

Julianne M. Pollard-Larkin, Radiation Physics, MDACC. Ph.D., University of California-Los Angeles, 2008.

Miguel A. Rodriguez-Bigas, Surgical Oncology, MDACC. M.D., University of Puerto Rico School of Medicine, 1982.

Ramaswamy Sadagopan, Radiation Physics, MDACC. M.S., UTH ealth-GSBS, 1989.

Rosemarie E. Schmandt, Gynecologic Oncology and Reproductive Sciences, MDACC. Ph.D., University of Toronto, 1996.

Simona Shaitelman, Radiation Oncology, MDACC. M.D., Harvard University, 2006.

Jianjun Shen, Epigenetics and Molecular Carcinogenesis, MDACC. Ph.D., Rutgers, The State University of New Jersey, 1992.

Keri C. Smith, Pathology & Laboratory Medicine, UTHealth-MS. Ph.D., Montana State University, 2001.

Jeffrey P. Spike, Center for Humanities & Ethics, UTHealth-MS. Ph.D., Johns Hopkins University, 1987.

Xiaoping Sun, Laboratory Medicine, MDACC. M.D., Zhejiang Medical University, 1984; Ph.D., Catholic University of Nijmegen & Shanghai Institute of Cell Biology, 1994

Ramesh C. Tailor, Radiation Physics Outreach, MDCC. Ph.D., Ohio University, 1983.

Paige Taylor, Radiation Physics, MDACC. M.S., UTHealth-GSBS, 2011.

Ah-Lim Tsai, Internal Medicine – Hematology, UTHealth-MS. Ph.D., Rice University, 1983.

Kyoji Tsuchikama, Institute of Molecular Medicine, UTHealth – MS. Ph.D., Waseda University, 2010.

Akihiko Urayama, Neurology, UTHealth – MS. Ph.D., University of Shizuoka, 2002

Oleg Vassiliev, Radiation Physics, MDACC. Ph.D., The University of Western Ontario, 2001.

Sastry Vedam, Radiation Physics, MDACC. Ph.D., Virginia Commonwealth University, 1993.

Dachun Wang, IMM, UTHealth-MS. M.D., Fujian Medical College, 1983.

He Catherine Wang, Radiation Physics, MDACC. Ph.D., Shanghai Jiaotong University, 1996.

Jihong Wang, Imaging Physics, MDACC. Ph.D., University of Colorado (Boulder), 1994.

Xiaochun Wang, Radiation Physics, MDACC. Ph.D., Ohio University, 2001.

Xin Wang, Radiation Physics, MDACC. Ph.D., University of Wisconsin–Madison, 1997.

Jerry S. Wolinsky, Neurology, UTHealth-MS. M.D., University of Illinois College of Medicine, 1969.

Yun Wu, Pathology, MDACC. M.D., Shanghai Medical University, 1991; Ph.D., UTHealth-GSBS, 1999.

James N. Yang, Radiation Physics, MDACC. Ph.D., University of Wisconsin-Madison, 1997.

Jinzhong Yang, Radiation Physics, MDACC. Ph.D., Lehigh University, 2006.

Melinda Yates, Gynecologic Oncology & Reproductive Medicine, MDACC. Ph.D., John Hopkins School of Medicine, 2009.

C. Cameron Yin, Hematopathology, MDACC. M.D., Beijing Medical University, 1990; Ph.D., University of Wisconsin-Madison, 1998.

Xiurong Zhao, Neurology, UTHealth-MS. M.D., University of Shandong Medical School at Jinan, 1983.

Zhongxiang Zhao, Radiation Physics, MDACC. Ph.D., University of Cincinnati, 2004.

Shouhao Zhou, Biostatistics, MDACC. Ph.D., Columbia University, 2011.

Eva M. Zsigmond, IMM, UTHealth-MS. Ph.D., University of Toronto, 1989.

Distinguished Senior Lecturers

Peter J. A. Davies, Center for Translational Cancer Research, TAMU-IBT. M.D., Ph.D., University of Miami, 1975.

Emil J. Freireich, Leukemia, MDACC. M.D., D.Sc.(Hon.), University of Illinois College of
The University of Texas
Graduate School of Biomedical Sciences at Houston

Medicine, 1949, 1982.

Carl S. Hacker, Management & Community Health Sciences, UTHealth-SPH. Ph.D., Rice University, 1968; J.D., University of Houston Law Center, 1987.

Walter N. Hittelman, Experimental Therapeutics, MDACC. Ph.D., University of California at Berkeley, 1972.

Randy Legerski, Genetics, MDACC. Ph.D., University of Houston, 1978.

Marvin L. Meistrich, Experimental Radiation Oncology, MDACC. Ph.D., Cornell University, 1967.

Raymond E. Meyn, Jr., Experimental Radiation Oncology, MDACC. Ph.D., University of Kansas, 1969.

Theodore D. Pate, Diagnostic and Biomedical Sciences, UTHealth-SOD. Ph.D., Baylor College of Medicine, 1974.

Gary C. Rosenfeld, Integrative Biology & Pharmacology, UTHealth-MS. Ph.D., University of Chicago, 1968.

William E. Seifert, Jr., Biochemistry & Molecular Biology, UTHealth-MS. Ph.D., Purdue University, 1975.

Mary Ann Smith, Epidemiology, Human Genetics, and Environmental Sciences, UTHealth-SPH. Ph.D., The University of Texas at Austin, 1984.

George M. Stancel, Integrative Biology & Pharmacology, UTHealth-MS. Ph.D., Michigan State University, 1970.

George Starkschall, Radiation Physics, MDACC. Ph.D., Harvard University, 1972.

Elizabeth L. Travis, Women Faculty Programs, MDACC. Ph.D., Medical University of South Carolina, 1976.

Emeritus Professors

R. W. Butcher, UTHealth-GSBS. Ph.D. Western Reserve University, 1963.

Fernando Cabral, UTHealth-MS. Ph.D., University of Rochester, 1974.

John A. DeMoss, UTHealth-MS. Ph.D., Western Reserve University, 1957.
Thomas P. Haynie, MDACC. M.D., Baylor College of Medicine, 1956.

Beng Ho, MDACC. Ph.D., University of Washington, 1962.

Dah Hsi Ho, MDACC. Ph.D., University of Oregon, 1962.

Kenneth R. Hogstrom, MDACC. Ph.D., Rice University, 1976.

John L. Horton, Jr., MDACC. Ph.D., The University of Texas at Austin, 1971.

Lovell Jones, MDACC. Ph.D., University of California at Berkeley, 1977.

Samuel Kaplan, UTHealth-MS. Ph.D., University of California at San Diego, 1963.

Margaret L. Kripke, MDACC, Ph.D., University of California, 1970.

Barbara M. Sanborn, UTHealth-MS. Ph.D., Boston University, 1968.

William J. Schull, UTHealth-SPH. Ph.D., Ohio State University, 1949.

Harry G. Sperling, UTHealth-MS. Ph.D., Columbia University, 1953.

Anna Steinberger, UTHealth-MS. Ph.D., Wayne State University, 1961.

Karen A. Storthz, UTHealth-SOD. Ph.D., Louisiana State University Medical Center, 1981.
