MECHANICAL

23 00 00 Basic Mechanical Requirements
23 05 29 Sleeves, Flashings, Supports and Anchors
23 05 53 Mechanical Identification
23 05 93 Testing, Adjusting and Balancing (TAB)
23 05 93A Testing, Adjusting and Balancing (Contractor Responsibilities)
23 07 19 Piping Insulation
23 73 00 DX Split System Units

ELECTRICAL

26 00 00 Basic Electrical Requirements
26 05 00 Basic Electrical Material and Methods
26 05 33 Raceway, Conduit and Boxes
26 05 53 Electrical Identification
26 24 16 Panelboards
26 28 13 Fuses
26 28 16 Disconnect Switches

E&C Engineers & Consultants, Inc.
TX Firm Registration No: F-003068
Date: 08-18-2017
Engineer of Record: Heather Camden, PE
State: of Texas License No: 86883
SECTION 23 00 00

BASIC MECHANICAL REQUIREMENTS

PART 1 GENERAL

1.01 SECTION INCLUDES

A. Basic Mechanical Requirements specifically applicable to Division 23 sections, in addition to Division 01 - General Requirements.

1.02 RELATED DOCUMENTS

A. THE UNIFORM GENERAL CONDITIONS, SUPPLEMENTARY GENERAL CONDITIONS, and Division 01 of the specifications apply to the work specified in this section.

B. All work covered by this section of these specifications shall be accomplished in accordance with all applicable provisions of the Contract Documents and any addenda or directives which may be issued herewith, or otherwise.

1.03 GENERAL

A. The Contractor shall execute all work hereinafter specified or indicated on accompanying drawings. Contractor shall provide all equipment necessary and usually furnished in connection with such work and systems whether or not mentioned specifically herein or on the drawings.

B. The Contractor shall be responsible for fitting his material and apparatus into the building and shall carefully lay out his work at the site to conform to the structural conditions, to avoid all obstructions, to conform to the details of the installation and thereby to provide an integrated satisfactory operating installation.

C. The mechanical, electrical, and associated drawings are necessarily diagrammatic by their nature, and are not intended to show every connection in detail or every pipe or conduit in its exact location. These details are subject to the requirements of standards referenced elsewhere in these specifications, and structural and architectural conditions. The Contractor shall carefully investigate structural and finish conditions and shall coordinate the separate trades in order to avoid interference between the various phases of work. Work shall be organized and laid out so that it will be concealed in furred chases and suspended ceilings, etc., in finished portions of the building, unless specifically noted to be exposed. All exposed work shall be installed parallel or perpendicular to the lines of the building unless otherwise noted.

D. When the mechanical and electrical drawings do not give exact details as to the elevation of pipe, conduit and ducts, the Contractor shall physically arrange the systems to fit in the space available at the elevations intended with proper grades for the functioning of the system involved. Piping, exposed conduit and the duct systems are generally intended to be installed true and square to the building construction, and located as high as possible against the structure. The drawings do not show all required offsets, control lines, pilot lines and other location details. Work shall be concealed in all finished areas.
1.04 DEFINITIONS (Note: These definitions are included here to clarify the direction and intention of this specification. The list given here is not by any means complete. For further clarification as required, contractor shall contact the designated Owner's representative.)

A. Concealed/exposed: Concealed areas are those that cannot be seen by the building occupants. Exposed areas are all areas that are exposed to view by the building occupants, including under counters, inside cabinets and closets, plus all mechanical rooms.

B. General Requirements: The provisions of requirements of other Division 01 sections apply to entire work of contract and, where so indicated, to other elements that are included in project. Basic contract definitions are included in the General Conditions.

C. Indicated: The term "indicated" is a cross reference to graphic representations, notes or schedules on drawings, to other paragraphs or schedules in the specifications, and to similar means of recording requirements on contract documents. Where terms such as "shown," "noted," "scheduled," and "specified" are used in lieu of "indicated," it is for the purpose of helping reader locate the cross reference, and no limitation of location is intended except as specifically noted.

D. Directed, requested, etc.: Where not otherwise explained, terms such as "directed," "requested," "authorized," "selected," "approved," "required," "accepted," and "permitted" mean "directed by Architect/Engineer," "requested by Architect/Engineer," "approved by Architect/Engineer" and similar phrases. However, no such implied meaning will be interpreted to extend Architect's/Engineer's responsibility into Contractor's area of construction supervision and job safety.

E. And/or: Where "and/or" is used in these specifications or on the drawings, it shall mean "that situations exist where either one or both conditions occur or are required and shall not be interpreted to permit an option on the part of the Contractor.

F. Approve: Where used in conjunction with Architect's/Engineer's response to submittals, requests, applications, inquiries, reports and claims by Contractor, the meaning of term "approved" will be held to limitations to Architect's/Engineer's responsibilities and duties as specified in General and Supplementary Conditions. In no case will "approval" by Architect/Engineer be interpreted as a release of Contractor from responsibilities to fulfill requirements of contract documents or to extend Architect's/Engineer's responsibility into Contractor's area of construction supervision and job safety.

G. As required: Where "as required" is used in these specifications or on the drawings, it shall mean "that situations exist that are not necessarily described in detail or indicated that may cause the contractor certain complications in performing the work described or indicated. These complications entail the normal coordination activities expected of the Contractor where multiple trades are involved and new or existing construction causes deviations to otherwise simplistic approaches to the work to be performed. The term shall not be interpreted to permit an option on the part of the Contractor to achieve the end result."

H. Furnish

1. The term "furnish" is used to mean "supply and deliver to project site, ready for unloading, unpacking, assemble, installation, and similar operations."

2. Where "furnish" applies to work for which the installation is not otherwise specified, "furnish" in such case shall mean "furnish and install."
I. Install: The term "install" is used to describe operations at project site including "unloading, unpacking, assembly, erection, placing, anchoring, applying, working to dimension, finishing, curing, protecting, cleaning and similar operation."

J. Provide: The term "provide" means "to furnish and install, complete and ready for intended use."

1.05 PERMITS, UTILITY CONNECTIONS AND INSPECTIONS

A. General: Refer to Division 01 for construction phasing and time increments.

B. Fees and Costs: If, during the course of the construction, a need arises to buy utilities, the Contractor shall pay all fees attendant thereto. If city or privately owned utility piping or electrical cable needs to be extended, relocated, or terminated, the Contractor will pay all permits and construction/inspection fees associated with that particular work.

C. All work performed on this project is under the authority of the State of Texas, therefore no local construction fees or construction permits will be required except as may be required for new service taps, or new or modified connections to city controlled services. If inspections by city personnel are specifically required by this document, then the Contractor is responsible for any fees or permits in connection to those requirements.

D. Compliance: The Contractor shall comply in every respect with all requirements of National Fire Protection Association, local Fire Department regulations and utility company requirements. In no case does this relieve the Contractor of the responsibility of complying with these specifications and drawings where specified conditions are of higher quality than the requirements of the above-specified authorities. Where requirements of the specifications and drawings are more lenient than the requirements of the above authorities having jurisdiction, the Contractor shall make installations in compliance with the requirements of the above authorities with no extra compensation.

1.06 CONTRACT DOCUMENTS

A. All dimensional information related to new structures shall be taken from the appropriate drawings. All dimensional information related to existing facilities shall be taken from actual measurements made by the Contractor on the site.

B. The interrelation of the specifications, the drawings, and the schedules are as follows: The specifications determine the nature and setting of the several materials, the drawings establish the quantities, dimensions and details, and the schedules give the performance characteristics. If the Contractor requires additional clarification, he shall request it in writing, following the contractually prescribed information flow requirements.

C. Should the drawings or specifications conflict within themselves, or with each other, the better quality, or greater size or quantity of work or materials shall be performed or furnished.

1.07 SUBMITTALS

A. Refer to Uniform General Conditions.

B. Proposed Products List: Include Products specified in the following sections:
1. Section 23 05 29 - Sleeves, Flashings, Supports and Anchors

2. Section 23 05 53 - Mechanical Identification

3. Section 23 05 93 – Testing, Adjusting, and Balancing

4. Section 23 05 93.A – Testing, Adjusting, and Balancing – Contractor Responsibilities

5. Section 23 07 19 - Piping Insulation

6. Section 23 63 13 – VRV Systems

C. Submit shop drawings and product data grouped to include complete submittals of related systems, products, and accessories in a single submittal.

D. Mark dimensions and values in units to match those specified.

E. Submit fabrication drawings whenever (1) equipment proposed varies in physical size and arrangement from that indicated on the drawings, thus causing rearrangement of equipment space, (2) where tight spaces require extreme coordination between ductwork, piping, conduit, and other equipment, (3) where called for elsewhere in these specifications; and (4) where specifically requested by the Architect/Engineer. Fabrication drawings shall be made at no additional charge to the Owner or the Architect/Engineer.

F. All required fabrication drawings, except as noted otherwise, shall be prepared at a scale of not less than 1/4" = 1'-0." Fabrication drawings for ductwork, air handling units, and sections in Mechanical Rooms shall be drawn at a minimum scale of 3/8" = 1'-0." Submit three blue-line prints of each fabrication drawing to the Architect/Engineer for review. Reproduction and submittal of the Construction Documents is not acceptable. The Architect/Engineer will review the drawing and return one print with comments.

1.08 SUBSTITUTION OF MATERIALS AND EQUIPMENT

A. Refer to General Conditions for substitution of materials and equipment.

B. General: Within thirty days after the date of contract award or work order, whichever is later, and before purchasing or starting installation of materials or equipment, the Contractor shall submit for review, a complete list of suppliers, contractors and manufacturers for all materials and equipment that will be submitted for incorporation into the project. The list shall be arranged in accordance with the organization of the specifications. This initial list shall include the manufacturer's name and type or catalog number as required to identify the quality of material or equipment proposed. This list will be reviewed by the Engineer and the Owner and will be returned to the Contractor with comments as to which items are acceptable without further submittal data and which items will require detailed submittal data for further review and subsequent approval. The initial list shall be submitted as herein specified. Materials and equipment requiring detailed submittal data shall be submitted with sufficient data to indicate that all requirements of these specifications have been met and samples shall be furnished when requested. All manufacturers’ data used as part of the submittal shall have all inapplicable features crossed out or deleted in a manner that will clearly indicate exactly what is to be furnished.
C. It is not the intent of the drawings and/or specifications to limit products to any particular manufacturer nor to discriminate against an "APPROVED EQUAL" product as produced by another manufacturer. Some proprietary products are mentioned to set a definite standard for acceptance and to serve as a reference in comparison with other products. When a manufacturer's name appears in these specifications, it is not to be construed that the manufacturer is unconditionally acceptable as a provider of equipment for this project. The successful manufacturer or supplier shall meet all of the provisions of the appropriate specification(s).

D. The specified products have been used in preparing the drawings and specifications and thus establish minimum qualities with which substitutes must at least equal to be considered acceptable. The burden of proof of equality rests with the Contractor. The decision of the designer is final.

E. When requested by the Architect/Engineer, the Contractor shall provide a sample of the proposed substitute item. In some cases, samples of both the specified item and the proposed item shall be provided for comparison purposes.

F. Timeliness: The burden of timeliness in the complete cycle of submittal data, shop drawings, and sample processing is on the Contractor. The Contractor shall allow a minimum of six (6) weeks time frame for review of each submission by the office of the design discipline involved after receipt of such submissions by that design discipline. The Contractor is responsible for allowing sufficient time in the construction schedule to cover the aforementioned cycles of data processing, including time for all resubmittal cycles on unacceptable materials, equipment, etc. covered by the data submitted. Construction delays and/or lack of timeliness in the above regard are the responsibility of the Contractor and will not be considered in any request for scheduled construction time extensions and/or additional costs to the Owner.

G. All equipment installed on this project shall have local representation, local factory authorized service, and a local stock of repair parts.

H. Acceptance of materials and equipment will be based on manufacturer's published data and will be tentative subject to the submission of complete shop drawings indicating compliance with the contract documents and that adequate and acceptable clearances for entry, servicing, and maintenance will exist. Acceptance of materials and equipment under this provision shall not be construed as authorizing any deviations from the specifications, unless the attention of the Architect/Engineer has been directed in writing to the specific deviations. Data submitted shall not contain unrelated information unless all pertinent information is properly identified.

I. Certification: The Contractor shall carefully examine all data forwarded for approval and shall sign a certificate to the effect that the data has been carefully checked and found to be correct with respect to dimensions and available space and that the equipment complies with all requirements of the specifications.

J. Physical Size of Equipment: Space is critical; therefore, equipment of larger sizes than shown, even though of specified manufacturer, will not be acceptable unless it can be demonstrated that ample space exists for proper installation, operation, and maintenance.

K. Materials and Equipment Lists: Eight (8) copies of the list of materials and equipment, the name of manufacturer, trade name, type, and catalog number shall be submitted to the
Architect/Engineer. The lists shall be accompanied by eight (8) sets of pictorial and descriptive data derived from the manufacturers' catalogs, sales literature, or incorporated in the shop drawings. Such lists shall include but will not be limited to the following items:

L. Should a substitution be accepted, and should the substitute material prove defective, or otherwise unsatisfactory for the service intended within the guarantee period, this material or equipment shall be replaced with the material or equipment specified at no additional cost to the Owner.

1.09 MATERIALS AND WORKMANSHIP

A. All materials, unless otherwise specified, shall be new, free from all defects, suitable for the intended use, and of the best quality of their respective kinds. Materials and equipment shall be installed in accordance with the manufacturer's recommendations and the best standard practice for the type of work involved. All work shall be executed by mechanics skilled in their respective trades, and the installations shall provide a neat, precise appearance. Materials and/or equipment damaged in shipment or otherwise damaged prior to installation shall not be repaired at the job site but shall be replaced with new materials and/or equipment.

B. The responsibility for the furnishing of the proper equipment and/or material and seeing that it is installed as intended by the manufacturer, rests entirely upon the Contractor who shall request advice and supervisory assistance from the representative of specific manufacturers during the installation.

1.10 FLAME SPREAD PROPERTIES OF MATERIALS

A. Materials and adhesives incorporated in this project shall conform to NFPA Standard 255, "Method of Test of Surface Burning Characteristics of Building Materials" and NFPA 90. The classification shall not exceed a flame spread rating of 25 for all materials, adhesives, finishes, etc., specified for each system, and shall not exceed a smoke developed rating of 50.

1.11 REGULATORY REQUIREMENTS

A. The "Authority Having Jurisdiction" over the project described by these documents is the Owner, as an Agency of the State of Texas. As such, it is required that the installation shall meet the minimum standards prescribed in the latest editions of the following listed codes and standards, which are made a part of these specifications. All referenced codes and standards shall be those current at the date of issue of the design documents.

B. National Fire Protection Association Standards (NFPA)
 1. NFPA No. 13, Sprinkler System, Installation
 2. NFPA No. 14, Standpipes and Hose Systems
 3. NFPA No. 20, Centrifugal Fire Pumps
 4. NFPA No. 37, Stationary Combustion Engines & Gas Turbines
 5. NFPA No. 45, Fire Protection for Laboratories Using Chemicals
7. NFPA No. 54, Gas Appliances, Piping, National Fuel Gas Code
8. NFPA No. 70, National Electrical Code
9. NFPA No. 72D, Proprietary Signaling Systems
10. NFPA No. 78, Lightning Protection Code
11. NFPA No. 88A, Standard for Parking Structures
12. NFPA No. 90A, Air Conditioning Systems
13. NFPA No. 91, Blower & Exhaust Systems
14. NFPA No. 99, Health Care Facilities
16. NFPA No. 200, Series, Building Construction
17. NFPA No. 211, Chimneys, Fireplaces, Vent Systems
19. NFPA No. 255, Method of Test of Surface Burning Characteristics of Building Materials

C. American National Standards Institute (ANSI)
 1. A40.8, National Plumbing Code
 2. B31.1, Power Piping

D. American Gas Association Publications (AGA): Directory of Approved Gas Appliances and Tested Accessories

E. American Society of Mechanical Engineers (ASME): Boiler and Pressure Vessel Codes

F. Air Conditioning and Refrigeration Institute Standards (ARI): All standards related to refrigeration and air conditioning equipment and piping furnished under these specifications.

G. Sheet Metal and Air Conditioning Contractors National Association, Inc. (SMACNA): All current editions of applicable manuals and standards (See Sections 23 31 00 and 23 33 00.UT).
H. Air Moving and Conditioning Association (AMCA): All current editions of applicable manuals and standards.

J. American Water Works Association (AWWA): All current editions of applicable manuals and standards.

K. National Electrical Manufacturers’ Association (NEMA): All current editions of applicable manuals and standards.

L. City of Houston Fire Department as may be applicable to construction on this site.

M. International Building Code 2015, (Includes the International Mechanical and International Plumbing Codes)

N. Texas Occupational Safety Act: All applicable safety standards

O. Occupational Safety and Health Act (OSHA)

P. ADA and ANSI Standards: All work shall be in accord with all regulations and requirements of the Standards and Specifications for Handicapped and Disabled for the Construction of Public Buildings and Facilities in the State of Texas Usable by Physically Handicapped and Disabled persons, ANSI Standards and the requirements of the American Disabilities Act.

Q. Refer to specification sections hereinafter bound for additional Codes and Standards.

R. All materials and workmanship shall comply with all applicable state and national codes, specifications, and industry standards. In all cases where Underwriters Laboratories, Inc. has established standards for a particular type material, such material shall comply with these standards. Evidence of compliance shall be the UL "label" or "listing" under Re-Examination Service.

S. The Contract Documents are intended to comply with the aforementioned rules and regulations; however, some discrepancies may occur. Where such discrepancies occur, the Contractor shall immediately notify the Architect/Engineer in writing of said discrepancies and apply for an interpretation. Should the discovery and notification occur after the execution of a contract, any additional work required for compliance with said regulations shall be paid for as covered by Division 01 of these Contract Documents, providing no work of fabrication of materials has been accomplished in a manner of noncompliance. Should the Contractor fabricate and/or install materials and/or workmanship in such a manner that does not comply with the applicable codes, rules and regulations, the Contractor who performed such work shall bear all costs arising in correcting these deficiencies to comply with said rules and regulations.

1.12 GENERAL MATERIALS AND EQUIPMENT REQUIREMENTS

A. Storage at Site: The Contractor shall not receive material or equipment at the job site until there is suitable space provided to properly protect equipment from rust, drip, humidity, and dust damage.
B. Capacities shall be not less than those indicated but shall be such that no component or system becomes inoperative or is damaged because of startup or other overload conditions.

C. Conformance with Agency Requirements: Where materials or equipment are specified to be approved, listed, tested, or labeled by the Underwriters Laboratories, Inc., or constructed and/or tested in accordance with the standards of the American Society of Mechanical Engineers or the Air Moving and Conditioning Association, the Contractor shall submit proof that the items furnished under this section of the specifications conform to such requirements. The label of the Underwriters Laboratories, Inc., applied to the item will be acceptable as sufficient evidence that the items conform to such requirements. The ASME stamp or the AMCA label will be acceptable as sufficient evidence that the items conform to the respective requirements.

D. Nameplates: Each major component of equipment shall have the manufacturer's name, address, and catalog number on a plate securely attached to the item of equipment. All data on nameplates shall be legible at the time of Final Inspection.

E. Prevention of Rust: Standard factory finish will be acceptable on equipment specified by model number; otherwise, surfaces of ferrous metal shall be given a rust inhibiting coating. The treatment shall withstand 200 hours in salt spray fog test, in accordance with Method 6061 of Federal Standard No. 141. Immediately after completion of the test, the specimen shall show no signs of wrinkling or cracking and no signs of rust creepage beyond 1/8" on either side of the scratch mark. Where rust inhibitor coating is specified hereinafter, any treatment that will pass the above test is acceptable unless a specific coating is specified except that coal tar or asphalt type coating will not be acceptable unless so stated for a specific item. Where steel is specified to be hot dip galvanized, mill galvanized sheet steel may be used provided all raw edges are painted with a zinc-pigmented paint conforming to Military Specification MIL-P-26915.

F. Protection from Moving Parts: Belts, pulleys, chains, gears, couplings, projecting set screws, keys, and other rotating parts shall be fully enclosed or properly guarded for personnel protection.

G. Verification of Dimensions: The Contractor shall be responsible for the coordination and proper relation of his work to the building structure and to the work of all trades. The Contractor shall visit the premises and become thoroughly familiar with all details of the work and working conditions, to verify all dimensions in the field, and to advise the Architect/Engineer of any discrepancy before performing any work. Adjustments to the work required in order to facilitate a coordinated installation shall be made at no additional cost to the Owner or the Architect/Engineer.

1.13 WALL, FLOOR AND CEILING PLATES
 A. See Section 23 05 29 – Sleeves, Flashings, Supports and Anchors.

1.14 SLEEVES, INSERTS, AND FASTENINGS
 A. See Section 23 05 29 – Sleeves, Flashings, Supports and Anchors.

1.15 PROJECT/SITE CONDITIONS
 A. Install Work in locations shown on drawings, unless prevented by Project conditions.
B. Prepare drawings showing proposed rearrangement of Work to meet Project conditions, including changes to Work specified in other sections. Obtain permission of Owner before proceeding.

1.16 MANUFACTURER'S RECOMMENDATIONS

A. The manufacturer's published directions shall be followed in the delivery, storage, protection, installation, piping, and wiring of all equipment and material. The Contractor shall promptly notify the Architect/Engineer, in writing, of any conflict between the requirements of the Contract Documents and the manufacturer's directions, and shall obtain the Architect/Engineer's instructions before proceeding with the work. Should the Contractor perform any such work that does not comply with the manufacturer's directions or such instructions from the Architect/Engineer, he shall bear all costs arising in connection with the deficiencies.

1.17 SPACE AND EQUIPMENT ARRANGEMENT

A. The size of mechanical and electrical equipment indicated on the drawings is based on the dimensions of a particular manufacturer. While other manufacturers may be acceptable, it is the responsibility of the Contractor to determine if the equipment he proposes to furnish will fit in the space. Fabrication drawings shall be prepared when required by the Architect/Engineer or Owner to indicate a suitable arrangement.

B. All equipment shall be installed in a manner to permit access to all surfaces. All valves, motors, drives, filters, and other accessory items shall be installed in a position to allow removal for service without disassembly of another part.

1.18 PROTECTION

A. The Contractor shall at all times take such precautions as may be necessary to properly protect all materials and equipment from damage from the time of delivery until the completion of the work. This shall include the erection of all required temporary shelters and supports to adequately protect any items stored in the open on the site from the weather, the ground and surrounding work; the cribbing of any items above the floor of the construction; and the covering of items in the incomplete building with tarpaulins or other protective covering; the installation of electric heaters in electrical switchgear and similar equipment to prevent moisture damage. Failure on the part of the Contractor to comply with the above will be sufficient cause for the rejection of the items in question.

B. Take particular care not to damage the building structure in performing work. All finished floors, step treads, and finished surfaces shall be covered to prevent any damage by workers or their tools and equipment during the construction of the building.

C. Equipment and materials shall be protected from rust both before and after installation. Any equipment or materials found in a rusty condition at the time of final inspection must be cleaned of rust and repainted as specified elsewhere in these specifications.

1.19 COOPERATION BETWEEN TRADES AND WITH OTHER CONTRACTORS

A. Each trade, subcontractor, and/or Contractor must work in harmony with the various other trades, subcontractors and/or Contractors on the job as may be required to facilitate the progress to the best advantage of the job as a whole. Each trade, subcontractor, and/or Contractor must pursue its work promptly and carefully so as not to delay the general
progress of the job. This Contractor shall work in harmony with Contractors working under other contracts on the premises.

1.20 ELECTRICAL WIRING OF MOTORS AND EQUIPMENT

A. The Contractor shall note that the electrical design and drawings are based on the equipment scheduled and indicated on the drawings, and should any mechanical equipment be provided requiring changes to the electrical design, the required electrical changes shall be made at no cost to the Owner.

B. The electrical trades shall provide all interconnecting wiring for the installation of all power. The electrical trades shall provide all disconnect switches as required for proper operation, as indicated on the drawings or required by applicable code. All combination starters, individual starters, and other motor starting apparatus not specifically scheduled or specified as provided by the equipment manufacturer under the scope of Division 23, shall be provided under the scope of Division 26.

C. The Mechanical Trades shall provide complete wiring diagrams indicating power wiring and interlock wiring. Diagrams shall be submitted to the Architect/Engineer for review within thirty (30) days after the submittals for equipment have been reviewed. Diagrams shall be based on accepted equipment and shall be complete full phase and interlock control drawings, not a series of manufacturer’s individual diagrams. After these diagrams have been reviewed by the Architect/Engineer, copies shall be transmitted to the electrical trades by the Contractor. They shall be followed in detail. See Section 15E, TEMPERATURE CONTROLS, for additional clarification.

1.21 SUPERVISION

A. Each Contractor and subcontractor shall keep a competent superintendent or foreman on the job at all times. (Refer to the Uniform General Conditions for additional information concerning supervision.)

B. It shall be the responsibility of each superintendent to study all drawings and familiarize himself with the work to be done by other trades. He shall coordinate his work with other trades and before material is fabricated or installed, make sure that his work will not cause an interference with another trade. Where interferences are encountered, they shall be resolved at the job site by the superintendents involved. Where interferences cannot be resolved without major changes to the drawings, the matter shall be referred to the A/E for ruling.

1.22 SITE OBSERVATION

A. Site observation by the Architect/Engineer is for the express purpose of verifying compliance by the Contractor with the Contract Documents, and shall not be construed as construction supervision nor indication of approval of the manner or location in which the work is being performed as being a safe practice or place.

1.23 PRECEDENCE OF MATERIALS

A. The specifications determine the nature and setting of materials and equipment. The drawings establish quantities, dimensions and details.
B. The installation precedence of materials shall be as follows. Note that if an interference is encountered, this shall guide the contractor in the determination of which trade shall be given the "Right-of-Way."

- Building lines
- Structural Members
- Soil and Drain Piping
- Condensate Drains
- Vent Piping
- Supply, Return, and Outside Air Ductwork
- Exhaust Ductwork
- HVAC Water and Steam Piping
- Steam Condensate Piping
- Fire Protection Piping
- Natural Gas Piping
- Domestic Water (Cold and Hot)
- Refrigerant Piping
- Electrical Conduit

1.24 CONNECTIONS FOR OTHERS

A. The Mechanical Contractor shall rough in for and make all gas, water, steam, sewer, etc. connections to all fixtures, equipment, machinery, etc., provided by others in accordance with detailed roughing in drawings provided by the equipment suppliers, by actual measurements of the equipment connections, or as detailed.

B. After the equipment is set in place, this Contractor shall make all final connections and shall provide all required pipe, fittings, valves, traps, etc.

C. Provide all air gap fittings required, using materials hereinbefore specified. In each service line connected to an item of equipment or piece of machinery, provide a shutoff valve. On each drain not provided with a trap, provide a suitable trap.

D. All pipe fittings, valves, traps, etc., exposed in finished areas and connected to chrome plated lines provided by others shall be chrome plated to match.

E. Provide all sheet metal ductwork, transition pieces, etc., required for a complete installation of vent hoods, fume hoods, etc., provided by others.

1.25 INSTALLATION METHODS

A. Where to Conceal: All pipes, conduits, etc., shall be concealed in pipe chases, walls, furred spaces, or above the ceilings of the building unless otherwise indicated.

B. Where to Expose: In mechanical rooms, janitor's closets tight against pan soffits in exposed "Tee" structures, or storage spaces, but only where necessary, piping may be run exposed. All exposed piping shall be run in the most aesthetic, inconspicuous manner, and parallel or perpendicular to the building lines.

C. Support: All piping, ducts and conduits shall be adequately and properly supported from the building structure by means of hanger rods or clamps to walls as herein specified.
D. Maintaining Clearance: Where limited space is available above the ceilings below concrete beams or other deep projections, pipe and conduit shall be sleeved through the projection where it crosses, rather than hung below them in a manner to provide maximum above floor clearance. Sleeves shall be as herein specified. Approval shall be obtained from the Architect/Engineer for each penetration.

E. All pipe, conduits, etc., shall be cut accurately to measurements established at the building and shall be worked into place without springing or forcing. All ducts, pipes and conduits run exposed in machinery and equipment rooms shall be installed parallel to the building lines, except that piping shall be sloped to obtain the proper pitch. Piping, ducts and conduits run in furred ceilings, etc., shall be similarly installed, except as otherwise shown. Conduits in furred ceilings and in other concealed spaces shall be neatly grouped and racked indicating good workmanship. All conduit and pipe openings shall be kept closed until the systems are closed with final connections.

1. All piping not directly buried in the ground shall be considered as "interior piping."

2. Prior to the installation of any ceiling material, gypsum, plaster, or acoustical board, the Contractor shall notify the construction inspector so that arrangement can be made for an inspection of the above ceiling area about to be "sealed" off. The Contractor shall give as much advance notice as possible no less than 10 working days.

3. All above ceiling areas will be subject to a formal inspection before ceiling panels are installed, or installation is otherwise concealed from view. All mechanical and electrical work at and above the ceiling, including items supported by the ceiling grid, such as air inlets or outlets and lighting fixtures, shall be complete and installed in accordance with contract requirements, including power to lighting fixtures, fans, and other powered items. Adequate lighting shall be provided to permit thorough inspection of all above ceiling items. The inspection will include representatives of the following: General Contractor and each Subcontractor having work above the ceiling, Architect/Engineer, Physical Plant, Resident Construction Manager’s Construction Inspector(s), the Resident Construction Manager, and Office of Facilities Planning and Construction (OFPC). Areas to be included and time of inspection shall be coordinated with the Construction Inspector.

4. The purpose of this inspection is to verify the completeness and quality of the installation of the air conditioning systems, the electrical systems, the plumbing systems, and any other special above ceiling systems such as pneumatic tube, vacuum systems, fire sprinkler piping and cable tray systems. The ceiling supports (tee bar or lath) shall be in place so that access panel and light fixture locations are identifiable and so that clearances and access provisions may be evaluated.

5. No ceiling materials may be installed until the resulting deficiency list from this inspection is worked off and the Construction Inspector has given approval.

1.26 RECORDS FOR OWNER

A. The Contractor shall maintain a set of "blueline" prints in the Field Office for the sole purpose of recording "installed" conditions. Daily note all changes made in these drawings in connection with the final installation including exact dimensioned locations of all new underground utilities, services and systems and all uncovered existing active and inactive piping outside the building.
B. At contract completion, the Contractor shall provide a set of reproducible photographic mylar drawings, plus the photo negatives of the revised drawings. The contractor shall transfer the information from the "blueline" prints maintained as described above, and turn over this neatly marked set of reproducible drawings representing the "as installed" work to the Architect/Engineers for verification and subsequent transmittal to the Owner. The Contractor shall refer to Division 01 of these specifications, and to the Uniform General Conditions, for additional information. These drawings shall include as a minimum:

1. Addendum written drawing changes.
2. Addendum supplementary drawings.
3. Accurate, dimensioned locations of all underground utilities, services and systems.
4. Identification of equipment work shown on Alternates as to whether alternates were accepted and work actually installed.
5. Change Order written drawing changes.

C. Electronic Media

1. In lieu of the drawings described above in 1.33B, it is preferred the contractor submit one set of blueline prints, one set of vellum reproducible, and one set of discs containing all the drawings in AUTOCAD 12 or 14 format.

D. "As installed" mylars shall bear a stamp, "stick-on decal" or lettered title block generally located in lower right hand corner of drawing entitled "AS INSTALLED DRAWING" with Company name of the installing trade Subcontractor and with a place for the date and the name of the responsible company representative.

E. In addition to the above, the Contractor shall accumulate during the progress of the job the following data, in duplicate, prepared in a neat brochure or packet folder and turn over to the Architect/Engineer for review, and subsequent delivery to the Owner.

1. All warranties and guarantees and manufacturers’ directions on equipment and material covered by the Contract.
2. Two sets of operating instructions for heating and cooling and other mechanical and electrical systems. Operating instructions shall also include recommended preventative maintenance and seasonal changeover procedures.
3. Valve tag charts and diagrams specified herein.
4. Approved wiring diagrams and control diagrams representing "as installed" conditions.
5. Copies of approved shop drawings.
6. Any and all other data and/or drawings required as submittals during construction.
7. Repair parts list of all major items and equipment including name, address and telephone number of local supplier or agent.

F. All of the above data shall be submitted to the Architect/Engineer for approval, and shall be corrected as instructed by the Architect/Engineer prior to submission of the final request for payment.

1.27 CUTTING AND PATCHING

A. General: Cut and patch walls, floors, etc., resulting from work in existing construction or by failure to provide proper openings or recesses in new construction.

B. Methods of cutting: Openings cut through concrete and masonry shall be made with masonry saws and/or core drills and at such locations acceptable to the Architect/Engineer. Impact type equipment shall not be used except where specifically acceptable to the Architect/Engineer. Openings in precast concrete slabs for pipes, conduits, outlet boxes, etc., shall be core drilled to exact size.

C. Restoration: All openings shall be restored to "as new" condition under the appropriate specification section for the materials involved, and shall match remaining surrounding materials and/or finishes.

D. Masonry: Where openings are cut through masonry walls, provide and install lintels or other structural supports to protect the remaining masonry. Adequate supports shall be provided during the cutting operation to prevent any damage to the masonry occasioned by the operation. All structural members, supports, etc., shall be of the proper size and shape, and shall be installed in a manner acceptable to the Architect/Engineer.

E. Plaster: All mechanical work in areas containing plaster shall be completed prior to the application of the finish plaster coat. Cutting of finish plaster coat will not be permitted.

F. Special Note: No cutting, boring, or excavating that will weaken the structure shall be undertaken.

1.28 ROOF PENETRATIONS AND FLASHING

A. Pipe, conduit and duct sleeves, pitch pockets, and flashings compatible with the roofing installation shall be provided and installed by a qualified contractor for all roof penetrations. This shall be the responsibility of the General Contractor.

1.29 OPERATION PRIOR TO COMPLETION

A. When any piece of mechanical equipment is operable and it is to the advantage of the Contractor to operate the equipment, he may do so, providing that he properly supervises the operation, and has the Construction Inspector's written permission to do so. The warranty period shall, however, not commence until the equipment is operated for the beneficial use of the Owner, or date of substantial completion, whichever occurs first.

B. Regardless of whether or not the equipment has or has not been operated, the Contractor shall properly clean the equipment, install clean filter media, properly adjust, and complete all deficiency list items before final acceptance by the Owner. The date of acceptance and performance certification will be the same date.
1.30 EXISTING FACILITIES

A. The Contractor shall be responsible for loss or damage to the existing facilities caused by him and his workers, and shall be responsible for repairing or replacing such loss or damage. The Contractor shall send proper notices, make necessary arrangements, and perform other services required for the care, protection and in service maintenance of all plumbing, heating, air conditioning, and ventilating services for the new and existing facilities. The Contractor shall erect temporary barricades, with necessary safety devices, as required to protect personnel from injury, removing all such temporary protection upon completion of the work.

B. The Contractor shall provide temporary or new services to all existing facilities as required to maintain their proper operation when normal services are disrupted as a result of the work being accomplished under this project.

C. Where existing construction is removed to provide working and extension access to existing utilities, Contractor shall remove doors, piping, conduit, outlet boxes, wiring, light fixtures, air conditioning ductwork and equipment, etc., to provide this access and shall reinstall them upon completion of work in the areas affected.

D. Where partitions, walls, floors, or ceilings of existing construction are indicated to be removed, all Contractors shall remove and reinstall in locations approved by the Architect/Engineer all devices required for the operation of the various systems installed in the existing construction. This is to include but is not limited to temperature controls system devices, electrical switches, relays, fixtures, piping, conduit, etc.

E. Outages of services as required by the new installation will be permitted but only at a time approved by the Owner. The Contractor shall allow the Owner two weeks in order to schedule required outages. The time allowed for outages will not be during normal working hours unless otherwise approved by the Owner. All costs of outages, including overtime charges, shall be included in the contract amount.

1.31 CHECKING AND TESTING MATERIALS AND/OR EQUIPMENT

A. Before the work is accepted, an authorized representative of the manufacturer of the installed materials and/or equipment shall personally inspect the installation and operation of his materials and/or equipment to determine that it is properly installed and in proper operating order. The qualifications of the representative shall be appropriate to the technical requirements of the installation. The qualifications of the representative shall be submitted to the owner for approval. The decision of the owner concerning the appropriateness of the representative shall be final. Testing and checking shall be accomplished during the course of the work where required by work being concealed, and at the completion of the work otherwise. In addition, the Contractor shall submit to the Architect/Engineer a signed statement from each representative certifying as follows: “I certify that the materials and/or equipment listed below have been personally inspected by the undersigned authorized manufacturer’s representative and is properly installed and operating in accordance with the manufacturer’s recommendations.”

B. Check inspections shall include plumbing equipment, heating, air conditioning, insulation, ventilating equipment, controls, mechanical equipment and such other items hereinafter specified or specifically designated by the Architect/Engineer.
1.32 TESTS

A. The Contractor shall make, at no additional cost to the Owner, any tests deemed necessary by the inspection departments having jurisdiction, and in the National Fire Protection Association, ASTM, etc. Standards listed. The Contractor shall provide all equipment, materials, and labor for making such tests. Reasonable amounts of fuel and electrical energy costs for system tests will be paid by the Owner. Fuel and electrical energy costs for system adjustment and tests that follow beneficial occupancy by the Owner will be borne by the Owner.

B. Additional tests specified hereinafter under the various specification sections shall be made.

C. The Construction Inspector shall be notified in writing at least 10 working days prior to each test and other specification requirements requiring action on the part of the Construction Inspector. All equipment shall be placed in operation and tested for proper automatic control requirements before the balancing agency starts their work.

D. Maintain Log of Tests as hereinafter specified.

E. See specifications hereinafter for additional tests and requirements.

1.33 LOG OF TESTS

A. All tests shall have pertinent data logged by the Contractor at the time of testing. Data shall include date, time, personnel, description, and extent of system tested, test conditions, test results, specified results, and other pertinent data. Data shall be delivered to the Architect/Engineer as specified under “Requirements for Final Acceptance.” All Test Log entries shall be legibly signed by the Project Contractor or his authorized job superintendent.

1.34 COOPERATION AND CLEANUP

A. It shall be the responsibility of each trade to cooperate fully with the other trades on the job to help keep the job site in a clean and safe condition. At the end of each day’s work, each trade shall properly store all of his tools, equipment and materials and shall clean his debris from the job. Upon the completion of the job, each trade shall immediately remove all of his tools, equipment, any surplus materials and all debris caused by that portion of the work.

1.35 CLEANING AND PAINTING

A. All equipment, piping, conduit, ductwork, grilles, insulation, etc., furnished and installed in exposed areas under Divisions 23 and 26 of these specifications and as hereinafter specified shall be cleaned, prepared, and painted according to the following specification. In the event of a conflict between the specifications referenced, the provisions of this specification shall prevail only for Division 23 and Division 26 work.

B. All purchased equipment furnished by the mechanical and electrical subcontractors shall be delivered to the job with a suitable factory protective finish with the colors hereinafter specified. The following materials shall not be painted: copper, galvanized metal, stainless steel, fiberglass, PVC, and PVDF.

C. Before painting, materials and equipment surfaces shall be thoroughly cleaned of cement, plaster, and other foreign materials, and all oil and grease spots shall be removed. Such
surfaces shall be carefully wiped and all cracks and corners scraped out. Exposed metalwork shall be carefully brushed down with the steel brushes to remove rust and other spots and left smooth and clean.

D. Color of finish painting in Mechanical Rooms shall be painted in accordance with The University of Texas Standard Color Schedule for machinery spaces using Pratt and Lambert, Inc.’s “Effector” enamel, or approved equal. For painting purposes, the equipment and piping inside of built-up air handling units shall be painted the same as if they were within the walls of a Mechanical Room. Two coats shall be applied with a light tint first coat and deep color for final coat. Colors shall be as follows:

<table>
<thead>
<tr>
<th>ITEM</th>
<th>COLOR</th>
<th>"P and L" PAINT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piping (Insulated and Uninsulated)</td>
<td>Light Gray</td>
<td>B798M (London Fog)</td>
</tr>
</tbody>
</table>

E. Jacketing on insulation shall not be painted.

F. No nameplates on equipment shall be painted, and suitable protection shall be afforded to the plates to prevent their being rendered illegible due to the painting operation.

G. Scope of painting for Divisions 23 and 26--work in areas other than those defined as "exposed" is as follows:

1. All uncovered steel pipe, supports, exposed pipe and hanger rod threads, and hangers in underfloor spaces shall be cleaned and painted with two coats of Tropical Paint Co. No. 77-black asphaltic emulsion. Galvanized steel and copper lines in these spaces shall not be painted.

2. All canvas finishes including those underfloor and in concealed spaces shall be painted with one sizing coat if not already sized, containing mildew resistant additive and Arabol adhesive prior to any other specified finish paint.

3. All fuel piping (natural gas, LPG, etc.) and all fire protection piping shall be painted whether concealed or exposed, in all areas of the project without exception. Fuel piping shall be painted safety yellow, and fire protection piping shall be painted safety red. These "safety" colors shall be as defined by OSHA.

4. If insulated, the piping shall be primed, only, prior to insulation, and the insulation jacketing shall be painted as specified for piping. The requirements of this paragraph are "primary" and have priority over any conflicting specification or instruction, should a conflict in the Construction Documents exist.

H. In addition to painting in mechanical rooms, materials, piping, ductwork, conduit, gear, supports, foundations, equipment and appurtenances installed by the mechanical and electrical subcontractors in exposed areas shall be finish painted with two coats of Pratt and Lambert, Inc.’s “Effector” enamel of color selected by the Architect/Engineer.

I. Additional areas to be defined as "exposed" for purposes of painting, are defined as follows: (Note that paragraph 1.3.10 of this section defines exposed areas for the balance of the
project. The areas listed below are to be painted in addition to exposed areas as previously defined.)

PART 2 PRODUCTS

2.01 Not Used.

PART 3 EXECUTION

3.01 Not Used.

END OF SECTION

- o o o -
SECTION 23 05 29

SLEEVES, FLASHINGS, SUPPORTS AND ANCHORS

PART 1 GENERAL

1.00 The following sections are to be included as if written herein:

A. Section 23 00 00 – Basic Mechanical Requirements

B. Section 23 05 53 – Mechanical Identification

1.01 SECTION INCLUDES

A. Pipe and equipment hangers and supports

B. Equipment bases and supports

C. Sleeves and seals

D. Flashing and sealing equipment and pipe stacks

1.02 RELATED SECTIONS

A. Section 23 07 19 - Piping Insulation

1.03 REFERENCES

A. ASME B31.1 - Power Piping

B. ASME B31.2 - Fuel Gas Piping

C. ASME B31.5 - Refrigeration Piping

D. ASME B31.9 - Building Services Piping

E. ASTM F708 - Design and Installation of Rigid Pipe Hangers

F. MSS SP58 - Pipe Hangers and Supports - Materials, Design and Manufacturer

G. MSS SP69 - Pipe Hangers and Supports - Selection and Application

H. MSS SP89 - Pipe Hangers and Supports - Fabrication and Installation Practices

I. NFPA 13 - Installation of Sprinkler Systems

J. NFPA 14 - Installation of Standpipe and Hose Systems

K. UL 203 - Pipe Hanger Equipment for Fire Protection Service
1.04 SUBMITTALS

A. Submit under provisions of Section 23 00 00.

B. Shop Drawings: Indicate system layout with location and detail of trapeze hangers.

C. Product Data: Provide manufacturers catalog data including load capacity.

D. Design Data: Indicate load carrying capacity of trapeze, multiple pipe, and riser support hangers.

E. Manufacturer's Installation Instructions: Indicate special procedures and assembly of components.

1.05 REGULATORY REQUIREMENTS

A. Conform to applicable code for support of plumbing, hydronic, steam and steam condensate piping.

PART 2 PRODUCTS

2.01 HANGERS AND SUPPORTS

A. Manufacturers:
 1. Grinnell.
 2. Kindorf
 3. B-Line
 4. Power Strut

B. Supports, hangers, anchors and guides shall be provided for all horizontal and vertical piping. Shop Drawings shall be provided, indicating locations and details of anchors, guides, expansion loops and joints, hangers, etc. The hanger design shall conform to the ASME Code for Pressure Piping.

C. All auxiliary steel required for supports, anchors, guides, etc. shall be provided by the Mechanical Trades unless specifically indicated to be provided by others.

D. The supports, hangers, anchors, and guides for the chilled water supply and return piping, steam piping, condensate return piping, etc. of the Campus Loop System routed through utility tunnels and below buildings shall be provided as indicated on the Drawings.

E. Contractor shall review all Drawings, including Structural Drawings, for details regarding pipe supports, anchors, hangers, and guides.

F. All Supports shall be of type and arrangement to prevent excessive deflection, to avoid excessive bending stresses between supports, and to eliminate transmission of vibration.

G. All rod sizes indicated in this Specification are minimum sizes only. This trade shall be responsible for structural integrity of all supports, anchors, guides, etc. All structural hanging materials shall have a minimum safety factor of 5 built in.
H. Anchor points as indicated on Drawings or as required shall be located and constructed to permit the piping system to take up its expansion and contraction freely in opposite directions away from the anchored points.

I. Guide points shall be located and constructed wherever required or indicated on Drawings and at each side of an expansion joint or loop, to permit free axial movement only.

J. Supports, hangers, anchors, and guides shall be fastened to the structure only at such points where the structure is capable of restraining the forces in the piping system.

K. Hangers supporting and contacting brass or copper lines 3" in size and smaller shall be Grinnell Fig. CT-99c, adjustable, copper plated, tubing ring. Hangers supporting and contacting brass or copper lines 4" and larger shall be Grinnell Fig. 260, adjustable clevis, with a nut above and below the hanger, and approved neoprene isolating material between pipe (or tubing) and hanger on the support rod. For insulated copper or brass domestic water lines, hangers for all sizes of pipe shall be Grinnell Fig. 300, adjustable clevis, with a nut above and below the hanger, and approved neoprene isolating material between pipe (or tubing) and hanger on the support rod. Isolate all copper or brass lines from all ferrous materials with approved dielectric materials. Hangers supporting and contacting plastic or glass piping shall be of equal design, but shall be padded with neoprene material or equal. The padding material and the configuration of its installation shall be submitted for approval.

L. Hangers supporting insulated lines where the outside diameter of the insulation is the equivalent of 8" diameter pipe or smaller in size and supporting all ferrous lines 6" and smaller in size shall be Grinnell Fig. 260, adjustable clevis, with a nut above and below the hanger on the support rod.

M. Hangers supporting and contacting ferrous lines larger than 6" in size and outside of insulation on lines with the outside diameter equivalent to 10" diameter pipe shall be Grinnell Fig. 260, adjustable clevis, with a nut above and below the hanger on the support rod.

N. Other special type of hangers may be employed where so specified or indicated on the Drawings, or where required by the particular conditions. In any case, all hangers must be acceptable to the owner.

O. Each hanger shall be properly sized to fit the supported pipe or fit the outside of the insulation on lines where specified. Hangers for dual or low temperature insulation pipes shall bear on the outside of the insulation, which shall be protected by support shields as specified in Section 23 07 19 - PIPING INSULATION. Protect insulation from crushing by means of a section of rigid insulation to be installed at hanger points. Hangers for high temperature insulated pipes and all insulated hot and cold domestic water pipes shall be encased in the insulation unless supported by trapezes in which case shield and rigid insulation shall be provided as specified above for low temperature insulated pipes.

P. Supports for vertical piping in concealed areas shall be double bolt riser clamps, Grinnell Fig. 261, or other approved equal, with each end having equal bearing on the building structure, and located at each floor. Two-hole rigid pipe clamps at 4 ft. o.c. or Kindorf channels and Grinnell Fig. 261 riser clamps may be used to support pipe directly from vertical surfaces or members where lines are not subject to expansion and contraction. When piping is subject to expansion and contraction, provide spring isolators (see Section 23 05 48 - Vibration Isolation). Where brass or copper lines are supported on trapeze hangers or Kindorf channels the pipes shall be isolated from these supports with plastic tape with insulating qualities, or strut clamps as manufactured by Specialty Products Company, Stanton, California.

Q. Supports for vertical piping in exposed areas (such as fire protection standpipe in stairwells) shall be
attached to the underside of the building structure above the top of the riser, and the underside of the
penetrated structure. The contractor shall use a drilled anchor as specified above, and use a Grinnell
No. 595 Socket Clamp with Grinnell No. 594 Socket Clamp Washers, as a riser clamp. The top riser
hanger shall consist of two (2) hanger rods (sized as specified) anchored to the underside of the
building structure, supporting the pipe by means of the material specified. Risers penetrating floors
shall be supported from the underside of the penetrated floor as specified for the top of the riser.

R. Pipe Supports in Chases and Partitions: Horizontal and vertical piping in chases and partitions shall be
supported by hangers or other suitable support. Pipes serving plumbing fixtures and equipment shall
be securely supported near the point where pipes penetrate the finish wall. Supports shall be steel
plate, angles, or special channels such as Unistrut mounted in vertical or horizontal position. Pipe
clamps such as Unistrut P2426, P2008, P1109 or other approved clamps shall be attached to
supports. Supports shall be attached to wall or floor construction with clip angles, brackets, or other
approved method. Supports may be attached to cast iron pipe with pipe clamp, or other approved
method. All copper or brass lines shall be isolated from ferrous metals with dielectric materials to
prevent electrolytic action.

S. All electrical conduits shall be run parallel or perpendicular to adjacent building lines. Single conduits
running horizontally shall be supported by "Caddy" or "Mineralac" type hangers from adequately sized
rods (minimum 1/4") from the building structure. Where multiple conduits are run horizontally, they
shall be supported on trapeze of "Unistrut" type channel suspended on rods or bolted to vertical
building members. Conduit shall be secured to channel with galvanized "Unistrut" type conduit clamps
or stainless steel "Unistrut" type "Uni-Clips." All hangers shall be fastened to the building structure in
the same manner as specified above for pipe hangers. Spacing of hangers shall be adequate for the
weight and rigidity of the conduits involved; in any case, no greater than 8' centers. Where feasible,
conduits may be fastened to the concrete by one-hole straps thoroughly anchored to the concrete in an
approved manner. Flexible conduit shall also be supported in an acceptable manner so as not to
interfere with the maintenance of above-ceiling equipment, and to support it from touching the ceiling
system. Conduit shall be located so as not to inhibit removal of ceiling tiles.

T. Perforated strap iron or wire will not, under any circumstances, be acceptable as hanger material.

U. Vibration Isolation: Resilient hangers shall be provided on all piping connected to rotating equipment
(pumps, etc.). Piping or ductwork that may vibrate and create an audible noise shall also be isolated.
Spring hangers or supports shall be provided where indicated on the Drawings and/or specified under
Section 23 05 48.

V. Attachment:

1. The load and spacing on each hanger and/or insert shall not exceed the safe allowable load for
any component of the support system, including the concrete which holds the inserts. Reinforcement at
inserts shall be provided as required to develop the strength required.

2. Inserts shall be of a type which will not interfere with reinforcing as shown on the structural
Drawings and which will not displace excessive amounts of structural concrete.

3. All supports shall be designed and installed to avoid interference with other piping, hangers,
ducts, electrical conduit, supports, building structures, equipment, etc. All piping shall be installed with
due regard to expansion and contraction and the type of hanger method of support, location of support,
etc. shall be governed in part by this Specification.
4. Hangers shall be attached to the structure as follows:

a) Poured In Place Concrete: Where pipes and equipment are supported under poured in place concrete construction, each hanger rod shall be fitted with a nut at its upper end, which nut shall be set into an Underwriters Laboratories, Inc. listed universal concrete insert placed in the form work before concrete is poured. Where inserts are placed in the bottom faces of concrete joists which are too narrow to provide adequate strength of concrete to hold the insert properly or where a larger insert would require displacement of the bottom joist steel, the hanger rod shall be suspended from the center of a horizontal angle iron, channel iron, I-beam, etc. spanning across two adjacent joists. The horizontal support shall be bolted to nonadjustable concrete inserts of the "spot" type, of physical size small enough to avoid the bottom joist steel.

b) Steel Bar Joists: Where pipes and loads are supported under bar joists, hanger rods may be run through the space between the bottom angles and secured with a washer and two nuts. Where larger lines are supported beneath bar joists, hanger rods shall be secured to angle irons of adequate size; each angle shall span across two or more joists as required to distribute the weight properly and shall be welded to the joists or otherwise permanently fixed thereto.

c) Steel Beams: Where pipes and loads are supported under steel beams, approved type beam clamps shall be used.

d) Wood Framing: Where pipes and loads are supported from wood framing, hanger rods shall be attached to framing with side beam brackets or angle clips.

e) Pre-Cast Tee Structural Concrete: Hanger supports, anchors, etc. required for mechanical systems attached to the precast, double tee, structural concrete system are to be installed in accord with approved shop Drawings only. Holes required for hanger rods shall be core drilled in the "flange" of the double tee only; impact type tools are not allowed under any circumstances. Core drilling in the "stem" portions of the double tee is not allowed. Holes core drilled through the "flange" for hanger rods shall be no greater than 1/4" larger than the diameter of the hanger rod. Hanger rods shall be supported by means of bearing plates of size and shape acceptable to the Architect/Engineer, with welded double nuts on the hanger rod above the bearing plate. Cinch anchors, lead shields, expansion bolts, and studs driven by explosion charges are not allowed under any circumstances in the lower 15" of each stem and in the "shadow" of the stem on the top side of the "double tees."

f) If it is necessary to install a method of fastening a hanger after the structure has been installed, then only clamps or drilled anchors shall be used.

Power-actuated fasteners (shooting) will not be acceptable under any circumstances.

Note: Under no circumstances will the use of plastic anchors or plastic expansion shields be permitted for any purpose whatsoever.

W. Trapezes: Where multiple lines are run horizontally at the same elevation and grade, they may be supported on trapezes of Kindorf, Uni-Strut, Power Strut, or approved equal, channel-suspended on rods or pipes. Trapeze members including suspension rods shall each be properly sized for the
number, size, and loaded weight of the lines they are to support.

X. Finishes: All hangers on piping including clevis hangers, rods, inserts, clamps, stanchions, and brackets, shall be dipped in Zinc Chromate Primer before installation. Rods may be galvanized or cadmium plated after threading, in lieu of dipping zinc chromate. Universal concrete inserts shall be cadmium plated.

Y. Ductwork: All ductwork shall be supported in accordance with the SMACNA recommendation for the service involved; however, all horizontal ductwork shall be supported at intervals not to exceed the scheduled values indicated elsewhere in this section. Horizontal ducts shall be supported using galvanized steel bands extending up both sides and onto the construction above, where they shall turn over and be secured with bolts and nuts fitted in inserts set in the concrete bolted to angles secured to the construction above, or secured in another approved manner. For attaching methods for precast double tee structural concrete, refer to details on the Drawings and as specified herein.

Z. Terminal units shall be supported by four 16 gauge, 1” wide sheet metal straps with ends turned under bottom of box at corners. Each band shall be secured by not over 3/4” in length, 1/4” diameter sheet metal screws - two on bottom of box and one on side. The other strap end shall be attached to the structure by 1/4” diameter threaded bolt into the concrete insert or into drilled-hole threaded concrete expansion anchor. Where interferences occur, overhead of the box, not allowing direct vertical support by straps, provide trapezes of Kindorf, Unistrut, or B-Line channel suspended by 1/4” diameter galvanized threaded rods providing such channels do not block access panels of boxes. Threaded rods shall be supported from structure by concrete insert or by drilled-hole threaded concrete expansion anchor.

AA. Miscellaneous: Provide any other special foundations, hangers and supports indicated on the Drawings, specified elsewhere herein; or required by conditions at the site. Hangers and supporting structures for suspended equipment shall be provided as required to support the load from the building structure in a manner acceptable to the Architect/Engineer.

BB. Fire Protection Systems: All hangers and supports for fire standpipe systems and fire sprinkler systems shall be Factory Mutual and Underwriters Laboratories, Inc. listed and labeled. Construction of hangers shall be as described above for common piping, except for the above-mentioned requirements.

2.03 ACCESSORIES

A. Hanger Rods: Galvanized mild steel threaded both ends, galvanized threaded one end, or galvanized continuous threaded.

B. Inserts: Malleable iron case of galvanized steel shell and expander plug for threaded connection with lateral adjustment, top slot for reinforcing rods, lugs for attaching to forms; size inserts to suit threaded hanger rods. Suitable concrete inserts for pipe and equipment hangers shall be set and properly located for all pipe and equipment to be suspended from concrete construction. If the inserts are later found not to be in the proper location for the placement of hangers, then drilled anchors shall be installed. Drilled anchors in concrete or masonry shall be submitted for the approval by the Owner.

2.04 FLASHING AND EQUIPMENT CURBS

NOTE: Stainless steel to be used for Galveston projects only.

A. Metal Flashing: 26 gauge galvanized (stainless steel) steel.
B. Metal Counterflashing: 22 gauge galvanized (stainless steel) steel.

C. Roofing Flashing: See specifications for Roofing, elsewhere in these Specifications.

D. Caps: Steel, 22 gauge minimum; 16 gauge at fire resistant elements.

E. Curbs: Welded 18 gauge galvanized steel shell and base, mitered 3 inch cant, variable step to match roof insulation, factory installed wood nailer.

2.05 SLEEVES

A. General: All openings through all floors, walls, and roofs, etc., regardless of material for the passage of piping, ductwork, conduit, cable trays, etc., shall be sleeved. All penetrations must pass through sleeves. Sleeves shall be set in new construction before concrete is poured, as cutting holes through any part of the concrete will not be permitted unless acceptable to the Architect/Engineer. If a penetration is cored into an existing vertical solid concrete, masonry or stone structure, then the installation of a sleeve will not be necessary.

1. Sleeve material for floors and exterior walls shall be Schedule 40 galvanized steel with welded water stop rings.

2. Sleeves through interior walls to be galvanized sheetmetal with gauge as required by wall fire rating, 20 gauge minimum.

B. The minimum clearance between horizontal penetrations including insulation where applicable, and sleeve shall be 1/4", except that the minimum clearance shall accommodate a Thunderline Link-seal closure where piping exits the building, or penetrates a wall below ground level. Contractor shall be responsible for the accurate location of penetrations in the slab for his pipe, duct, etc. All penetrations shall be of ample size to accommodate the pipe, duct, etc., plus any specified insulation. Void between sleeve and pipe in interior penetrations shall be filled with Nelson Flameseal Firestop or approved equal caulk or putty.

C. Floor sleeves shall extend above the finished floor as detailed on the drawings, except that floor sleeves in stairwells shall be flush with the finished floor. Sleeves in walls shall be trimmed flush with wall surface. Refer to the details on the project drawings. Where the details differ from these specifications, the drawings take precedence.

D. Sleeves for penetrations passing through walls or floors on or below grade shall be removed, if practical, and after the pipes have been installed, the void space around the pipe shall be caulked with a suitable material to effect a waterproof penetration. Note that the practicality of the removal of the sleeve shall be the decision of the Construction Inspector. The decision of the Inspector shall be final.

G. Vermin proofing: The open space around all ductwork, piping, etc., passing through the ground floor and/or exterior walls shall be vermin proofed in a manner acceptable to the Architect/Engineer.

H. Waterproofing: The annular space between a pipe and its sleeve in interior floors shall be filled with polyurethane foam rods 50 percent greater in diameter than the space as backing and fill material and made watertight with a permanent elastic polysulfide compound. Seal both surfaces of floor.

I. Air Plenums: The space around piping, ductwork, etc., passing through air plenums shall be made
J. Fireproofing: Seal all cable trays, pipe, conduit, duct, etc., penetrations through roof, fire rated walls and floors with a foam or sealant as described below, that will form a watertight, vermin tight barrier that is capable of containing smoke and fire up to 2000°F for two hours. Sealing of cable trays and conduits that extend through rated walls from ends of cable tray shall be done after conductors have been installed. For wet locations, the foam material shall be a silicone RTV foam or an approved equal. For dry locations, a premixed putty equal to Nelson Flameseal Firestop putty may be used.

PART 3 EXECUTION

3.01 INSTALLATION
A. Install in accordance with manufacturer's instructions.

3.02 INSERTS
A. Provide inserts for placement in concrete formwork.
B. Provide inserts for suspending hangers from reinforced concrete slabs and sides of reinforced concrete beams.
C. Provide hooked rod to concrete reinforcement section for inserts carrying pipe over 4 inches.
D. Where concrete slabs form finished ceiling, locate inserts flush with slab surface.
E. Where inserts are omitted, drill through concrete slab from below and provide through-bolt with recessed square steel plate and nut recessed into and grouted flush with slab.

3.03 PIPE HANGERS AND SUPPORTS
A. Support horizontal piping as scheduled.
B. Install hangers to provide minimum 1/2 inch space between finished covering and adjacent work.
C. Place hangers within 12 inches of each horizontal elbow.
D. Use hangers with 1-1/2 inch minimum vertical adjustment.
E. Support horizontal cast iron pipe adjacent to each hub, with 5 feet maximum spacing between hangers.
F. Support vertical piping at every floor. Support vertical cast iron pipe at each floor at hub.
G. Where several pipes can be installed in parallel and at same elevation, provide multiple or trapeze hangers.
H. Support riser piping independently of connected horizontal piping.
I. Provide copper plated hangers and supports for copper piping.
J. Design hangers for pipe movement without disengagement of supported pipe.
K. Prime coat exposed steel hangers and supports. Hangers and supports located in crawl spaces, pipe shafts, and suspended ceiling spaces are not considered exposed, but shall be corrosion protected with galvanized plating. Repair any damaged galvanized plating with a coating of 'Galvalum'.

L. Hanger Rods: (NOTE: All hanger rods shall be trimmed neatly so that no more than 1 inch of excess hanger rod protrudes beyond the hanger nut. In the event a rod is intentionally but temporarily left excessively long (for sloped or insulated lines for example), the contractor shall take appropriate measures to protect the pipe or other materials from damage.)

3.04 FLASHING

A. Provide flexible flashing and metal counterflashing where piping and ductwork penetrate weather or waterproofed walls, floors, and roofs.

B. Flash vent and soil pipes projecting 3 inches minimum above finished roof surface with lead worked one inch minimum into hub, 8 inches minimum clear on sides with 24 x 24 inches sheet size. For pipes through outside walls, turn flanges back into wall and caulk, metal counterflash, and seal.

C. Flash floor drains in floors with topping over finished areas with lead, 10 inches clear on sides with minimum 36 x 36 inch sheet size. Fasten flashing to drain clamp device.

D. Seal floor watertight to adjacent materials.

E. Provide acoustical lead flashing around ducts and pipes penetrating equipment rooms, installed in accordance with manufacturer's instructions for sound control.

F. Provide curbs for mechanical roof installations 14 inches minimum high above roofing surface. Flash and counterflash with sheet metal; seal watertight. Attach counterflashing mechanical equipment and lap base flashing on roof curbs. Flatten and solder joints.

G. Adjust storm collars tight to pipe with bolts; caulk around top edge. Use storm collars above roof jacks. Screw vertical flange section to face of curb.

3.05 SLEEVES

A. Set sleeves in position in formwork. Provide reinforcing around sleeves.

B. Size sleeves large enough to allow for movement due to expansion and contraction. Provide for continuous insulation wrapping.

C. Extend sleeves through floors (except in stairwells) two inches above finished floor level. Sleeves through floors shall have welded waterstop rings. Sleeves shall be sealed watertight to floors and pipe.

D. Where piping, ductwork or conduit penetrates floor, ceiling, or wall, close space between pipe or duct and adjacent work with fire stopping insulation and caulk airtight. Provide close fitting metal collar or escutcheon covers, as appropriate, at both sides of penetration.

E. Install chrome plated steel or stainless steel escutcheons at finished surfaces.
3.06 PIPE SUPPORT SCHEDULES

<table>
<thead>
<tr>
<th>STEEL PIPE SIZE</th>
<th>MAX. HANGER SPACING</th>
<th>HANGER ROD DIAMETER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inches</td>
<td>Feet</td>
<td>Inches</td>
</tr>
<tr>
<td>1/2 to 1-1/4</td>
<td>6.5</td>
<td>3/8</td>
</tr>
<tr>
<td>1-1/2 to 2</td>
<td>10</td>
<td>3/8</td>
</tr>
<tr>
<td>2-1/2 to 3</td>
<td>10</td>
<td>1/2</td>
</tr>
<tr>
<td>4 to 6</td>
<td>10</td>
<td>5/8</td>
</tr>
<tr>
<td>8 to 12</td>
<td>14</td>
<td>7/8</td>
</tr>
<tr>
<td>14 and Over</td>
<td>20</td>
<td>1</td>
</tr>
</tbody>
</table>

PP, PVDF, PVC, CPVC (All Sizes) 4 3/8

C.I. Bell and Spigot (or No-Hub), and at all Joints 5 5/8

Glass, and at all Joints 4 1/2

END OF SECTION

- o o o -
SECTION 23 05 53
MECHANICAL IDENTIFICATION

PART 1 GENERAL

1.00 The following sections are to be included as if written herein:

A. Section 23 00 00 – Basic Mechanical Requirements
B. Section 23 05 29 – Sleeves, Flashings, Supports and Anchors

1.01 SECTION INCLUDES

A. Nameplates
B. Tags
C. Stencils
D. Pipe Markers

1.02 REFERENCES

A. ASME A13.1 - Scheme for the Identification of Piping Systems

1.03 SUBMITTALS

A. Submit under provisions of Section 23 00 00.
B. Submit list of wording, symbols, letter size, and color coding for mechanical identification.
C. Submit valve chart and schedule, including valve tag number, location, function, and valve manufacturer's name and model number.
D. Product Data: Provide manufacturers catalog literature for each product required.
E. Samples: Submit two of each type of label, tag, etc., of the approximate size specified or implied in the specification.
F. Manufacturer's Installation Instructions: Indicate special procedures, and installation.

1.04 PROJECT RECORD DOCUMENTS

A. Submit under provisions of Section 23 00 00.
B. Record actual locations of tagged valves.

PART 2 PRODUCTS

2.01 NAMEPLATES

A. Manufacturers:
1. Seton

2. Other acceptable manufacturers offering equivalent products
 a) Brady
 b) Bunting
 c) EMED

B. Description: Laminated three-layer plastic with engraved letters on light contrasting background color.

2.02 PIPE MARKERS

A. Manufacturers:
 1. Seton
 2. Other acceptable manufacturers offering equivalent products.
 a) W.H. Brady
 b) Bunting
 c) EMED

B. Color: Conform to ASME A13.1.

C. Plastic Pipe Markers: Factory fabricated, flexible, semi-rigid plastic, preformed to fit around pipe or pipe covering; minimum information indicating flow direction arrow and identification of fluid being conveyed.

D. Plastic Tape Pipe Markers: Flexible, vinyl film tape with pressure sensitive adhesive backing and printed markings.

E. Underground Plastic Pipe Markers: Bright colored continuously printed plastic ribbon tape, minimum 6 inches (150 mm) wide by 4 mil (0.10 mm) thick, manufactured for direct burial service.

2.03 General: The Contractor shall make it possible for the personnel operating and maintaining the equipment and systems in this project to readily identify the various pieces of equipment, valves, piping, etc., by marking them. All items of equipment such as fans, pumps, etc., shall be clearly marked using engraved nameplates as hereinafter specified. The item of equipment shall indicate the same number as shown on the Drawings. For example, pumps will be identified as 3A, 3B, 3C, etc.; exhaust fans will be E-1, E-2, etc.; supply fans will be S-1, S-2, etc.

2.04 Mechanical: All items of mechanical equipment shall be identified by the attachment of engraved nameplates constructed from laminated phenolic plastic, at least 1/16" thick, 3-ply, with black surfaces and white core. Engraving shall be condensed Gothic, at least 1/2" high, appropriately spaced. Nomenclature on the label shall include the name of the item, its mark number, area, space, or equipment served, and other pertinent information. Equipment to be labeled shall include but not be limited to the following:
2.05 Piping: Pipe markers and arrow markers also shall be provided on but not limited to the piping of the following systems:

Refrigerant Piping

2.06 Electrical: Nameplates shall be 2 or 3 ply laminated plastic, a minimum of 3/32" thick, such that letters will be white on black background. Letters shall be similar to Roman Gothic of a size that is legible and appropriate to the application. Attachment of nameplates shall be by screws. Rivets or adhesives are not acceptable.

A. Electrical equipment to be identified includes: All switchgear, distribution panels, transformers, motor control centers, panel boards, disconnect switches, starters, contactors and time switches.

B. Nameplates on distribution panels, motor control centers and panel boards shall give voltage characteristics.

Example:

```
PANEL LA
120/208V, 3 PH, 4 W
served from .
```

C. Individual circuit breakers in distribution panels, individual units in motor control centers, disconnecting means, and motor starters, shall have nameplates showing the load served.

D. Branch circuit panel boards shall have neatly typed circuit directories behind clean plastic. Identify circuits by room numbers. Room numbers shall be those finally selected by the Owner, not necessarily those given on contract Drawings. If a circuit serves more than one room, list each room. Spares and spaces shall be indicated with erasable pencil, not typed.

2.07 Specials: Refer to special requirements noted in the various sections hereinafter bound.

PART 3 EXECUTION

3.01 PREPARATION

A. Degrease and clean surfaces to receive adhesive for identification materials.

B. Prepare surfaces in accordance with Section 09 91 00 for stencil painting.

3.02 INSTALLATION

A. Install plastic nameplates with corrosive-resistant mechanical fasteners, or adhesive. Apply with sufficient adhesive to ensure permanent adhesion and seal with clear lacquer.

B. Install tags with corrosion resistant chain.

C. Apply stencil painting in accordance with Section 09 91 00.

D. Install plastic pipe markers in accordance with manufacturer's instructions.
E. Install plastic tape pipe markers complete around pipe in accordance with manufacturer's instructions.

F. Identify Fan Coil Units and Condensing Units with plastic nameplates.

G. Identify thermostats relating to fan coil units with nameplates.

END OF SECTION

- o 0 o -
SECTION 23 05 93

SYSTEM TESTING, ADJUSTING AND BALANCING

PART 1 GENERAL

1.00 The following sections are to be included as if written herein:

A. 23 00 00 -- Basic Mechanical Requirements
B. 23 05 29 -- Sleeves, Flashings, Supports and Anchors
C. 23 05 53 -- Mechanical Identification
D. 23 63 13 -- Variable Refrigerant Volume DX Systems

1.01 SUMMARY

A. Testing, adjusting and balancing (TAB) of the air conditioning systems and related ancillary equipment will be performed by an impartial technically qualified TAB firm selected and employed by the Owner, separate and apart from the construction contract.

B. The firm shall be capable of performing the services specified at the location of the facility described within the time specified, of preparing and submitting the detailed report of the actual field work performed, and following up the basic work as may be required.

1.02 QUALIFICATIONS

A. The Firm shall be one which is organized to provide professional services of this specified type in the State of Texas and as a minimum shall have one (1) professional engineer licensed in the State of Texas, with current registration, to perform such professional services. This engineer shall be personally responsible for developing the job site data as required in the test procedures outlined in these Specifications.

B. The Firm shall have operated a minimum of five (5) years under its current Firm name, and shall be in good standing with the State of Texas, Franchise Tax Board. The firm shall submit their full incorporated name, Charter Number and Taxpayer's I.D. Number for proper verification of the firm's status.

C. The Firm shall be capable of providing a performance bond, by a bonding company licensed to do business in the State of Texas, if determined by the Owner that such a bond is required. The amount of the bond which may be required shall be equal to the cost of the proposal submitted, or in the case of more than one proposal, the sum of all such proposals and any awarded work in progress.

D. All personnel used on the job site shall be either professional engineers or engineering technicians, who shall have been permanent, full time employees of the firm for a minimum of six (6) months prior to the start of work for this specific project.

E. The TAB firm shall submit biographical data on the individual proposed who will directly supervise the TAB work, as well as other personnel scheduled to perform the technical work under the contract. It shall also submit a background record of at least five years of specialized experience in the field of air hydronic system balancing, and shall possess properly calibrated instrumentation. The supervisory personnel for the TAB firm shall be
registered engineers in the mechanical field and all of the employees used in the TAB firm shall be permanent, full-time employees of the firm.

1.03 REFERENCES

1.04 DOCUMENTS

A. The TAB firm shall, as a requirement of the TAB contract, arrange with the Architect to compile one set of mechanical specifications, all pertinent change orders, and the following:

1. One complete set of Drawings less the structural sheets.

2. One set of mechanical floor plans of the conditioned spaces. These Drawings shall be ozalid type (blue or black on light background) reproductions to facilitate marking.

B. Approved submittal data on equipment installed, and related changes as required to accomplish the test procedures outlined in Paragraphs 1.06 through 1.10 of this Specification will be available through the Construction Inspector.

1.05 RESPONSIBILITIES OF THE TAB FIRM

A. The TAB personnel shall check, adjust, and balance the components of the air conditioning system which will result in optimal noise, temperature, and airflow conditions in the conditioned spaces of the building while the equipment of the system is operating economically. This is intended to be accomplished after the system components are installed and operating as provided for in the contract documents. It is the responsibility of the Mechanical Contractor to place the equipment into service. Variable air volume systems shall be balanced in accordance with AABC 2002 Standard, Sixth Edition.

B. Liaison and Early Inspection:

1. The TAB firm personnel on the job shall act as liaison between the Owner, Architect and Contractor. The following reviews (observations) and tests shall be performed by the TAB Agency:

a. During the design stage, before the documents are finalized, review the mechanical drawings and specifications for balanceability and provide commentary.

b. During construction, review all HVAC submittals such as control diagrams, air handling devices, etc., that pertain to commissioning work and balanceability.

c. Allow for a fixed number of trips to the project site, over and above those required for testing and balancing for inspection of installation of the mechanical piping systems, sheet metal work, temperature controls and
other component parts of the heating, air conditioning and ventilating systems during the construction stage. These inspections shall be made prior to and/or at the above ceiling inspection. Commentary will be provided to the RCM of each observation.

2. During the balancing process, as abnormalities and malfunctions of equipment or components are discovered by the TAB personnel, the Construction Inspector shall be advised in writing so that the condition can be corrected by the Mechanical Contractor. The written document need not be formal, but must be understandable and legible. Data from malfunctioning equipment shall not be recorded in the final TAB report. The TAB firm shall not instruct or direct the Contractor in any of the work, but will make such reports as are necessary to the Owner.

1.06 FINAL AIR BALANCE

General: When systems are complete and ready for operation, the TAB Consultant will perform a final air balance for all air systems and record the results. The outside, supply, exhaust and return air volume for each air handling unit, supply fan and exhaust fan and the supply, exhaust or return air volume for each distribution device shall be adjusted to within ±5% of the value shown on the drawings. Air handling unit and fan volumes shall be adjusted by changing fan speed and adjusting volume dampers associated with the unit. Air distribution device volume shall be adjusted using the spin-in tap damper for flexible duct connected devices and the device OBD for duct connected devices. Air distribution devices shall be balanced with air patterns as specified. Duct volume dampers shall be adjusted to provide air volume to branch ducts where such dampers are shown. The general scope of balancing by the TAB Consultant will include, but is not limited to, the following:

1. Filters: Check air filters and filter media and balance only system with essentially clean filters and filter media. The Division 23 Contractor shall install new filters and filter media prior to the final air balance.

2. Blower Speed: Measure RPM at each fan or blower to design requirements. Where a speed adjustment is required, the Division 23 Contractor shall make any required changes.

3. Ampere Readings: Measure and record full load amperes for motors.

4. Equipment Air Flow: Adjust and record exhaust, return, outside and supply air CFM (s) and temperatures, as applicable, at each fan, blower and coil.

6. Leaving Air Temperatures: Set controls for full cooling and for full heating loads. Read and record entering and leaving dry bulb and wet bulb temperatures (cooling only) at each cooling coil, heating coil and HVAC terminal unit. At the time of reading record water flow and entering and leaving water temperatures (In variable flow systems adjust the water flow to design for all the above readings).

1.07 REPORTS

A. The activities described in this section shall culminate in a report to be provided in quadruplicate (4) individually bound to the RCM. Neatly type and arrange data. Include with the data the date tested, personnel present, weather conditions, nameplate record of test instrument and list all measurements taken after all corrections are made to the system. Record all failures and corrective action taken to remedy incorrect situation. The intent of the final report is to provide a reference of actual operating conditions for the Owner's operations personnel.
B. All measurements and recorded readings (of air, water, electricity, etc.) that appear in the reports must have been made onsite by the permanently employed technicians or engineers of the firm.

C. At the option of the Construction Inspector, all data sheets tabulated each day by TAB personnel shall be submitted for initial by the Construction Inspector. Those work sheets so initialed, or copies thereof, shall be presented as a supplement to the final TAB report.

D. Submit reports on forms approved by the Owner & Engineer which will include the following information as a minimum:

1. Title Page
 a) Company Name
 b) Company Address
 c) Company telephone number
 d) Project name
 e) Project location
 f) Project Manager
 g) Project Engineer
 h) Project Contractor
 i) Project Identification Number

2. Instrument List
 a) Instrument
 b) Manufacturer
 c) Model
 d) Serial Number
 e) Range
 f) Calibration date
 g) What test instrument was used for

3. Fan Data (Supply and Exhaust)
 a) Location
 b) Manufacturer
 c) Model
 d) Air flow, specified and actual
 e) Total static pressure (total external), specified and actual
 f) Inlet pressure
 g) Discharge pressure
 h) Fan RPM

4. Electric Motors
 a) Manufacturer
 b) HP/BHP
 c) Phase, voltage, amperage, nameplate, actual
 d) RPM
 e) Service factor
 f) Starter size, heater elements, rating
5. Fan Coil Unit Data

a) Identification/number
b) Location
c) Service
e) Manufacturer
f) Entering air DB temperature, design and actual
g) Entering air WB temperature, design and actual
h) Leaving air DB temperature, design and actual
i) Leaving air WB temperature, design and actual
j) Air Flow, design and actual

END OF SECTION

- o 0 o -
SECTION 23 05 93.A

SYSTEM PREPARATION FOR
TESTING, ADJUSTING AND BALANCING

PART 1 GENERAL

1.00 The following sections are to be included as if written herein:

A. Section 23 00 00 – Basic Mechanical Requirements
B. Section 23 05 29 – Sleeves, Flashings, Supports and Anchors
C. Section 23 05 53 – Mechanical Identification

1.01 SUMMARY

A. Perform all work required to prepare the building HVAC systems for testing, adjusting and balancing indicated by the Contract Documents as follows:

1. Responsibilities of project contractor
2. Preparation for balancing of air systems
3. Preparation for balancing of hydronic and steam systems

B. The scope of the TAB work as defined in Section 23 05 93 is indicated in order that the Contractor will be advised of the coordination, adjustment, and system modification which will be required under the project work in order to complete the Owner's requirements for final TAB. The TAB firm will not have a contractual relationship with any Contractor referred to herein, but will be responsible to the Construction Inspector and the Owner for the satisfactory execution of the TAB work. The Contractor in his original bid shall allow for the costs required to cover all work which may be required in the TAB phases as defined herein and as may be necessary for the completion of the TAB work as defined by the TAB firm.

1.02 RELATED SECTIONS

A. Section 23 05 93 – System Testing, Adjusting and Balancing
B. Section 23 63 13 – VRV Systems

1.03 SCOPE OF WORK

A. Testing, adjusting, and balancing (TAB) of the air conditioning systems and related ancillary equipment will be performed by an impartial technically qualified TAB firm selected and employed directly by the Owner, separate and apart from the Construction Contract. However, the preparation for and corrections necessary for the Testing, Adjusting and Balancing of these systems, as described herein, are the responsibility of the Contractor.

B. As a part of this project Construction Contract, the Contractor shall make any changes or replacements to the sheaves, belts, dampers, valves, etc. required for correct balance as advised by the TAB firm, at no additional cost to the Owner.

C. The Contractor shall provide and coordinate the services of qualified, responsible Subcontractors, suppliers and personnel as required to correct, repair, and/or replace any
and all deficient items or conditions found during the course of this project, including the testing, adjusting and balancing period.

D. In order that all systems may be properly tested, balanced, and adjusted as required herein by these Specifications, the Contractor shall operate said systems at his expense for the length of time necessary to properly verify their completion and readiness for TAB. This length of time shall be subject to the approval of the Construction Inspector.

E. Project Contract completion schedules shall allow for sufficient time to permit the completion of TAB services prior to Owner occupancy. The Contractor shall allow adequate time for the testing and balancing activities of the owner provided services, during the construction period, and prior to Substantial Completion as defined in the Uniform General Conditions of this Construction Document.

F. The Drawings and Specifications indicate valves, dampers and miscellaneous adjustment devices for the purpose of adjustment to obtain optimum operating conditions, and it will be the responsibility of the Contractor to install these devices in a manner that will leave them accessible and readily adjustable. Should any such device not be readily accessible, the Contractor shall provide access as requested by the TAB firm. Also, any malfunction encountered by TAB personnel and reported to the Contractor or the Construction Inspector shall be corrected by the Contractor immediately so that the balancing work can proceed with the minimum of delays.

1.04 RESPONSIBILITIES OF THE PROJECT CONTRACTOR:

A. The Contractor shall:

1. Have the building and air conditioning systems in complete operational readiness for TAB work to begin.

2. The contractor shall allow sufficient time for the TAB firm to perform his contracted work within the construction schedule. The contractor shall complete his work by systems or floors whichever is the most efficient for scheduling. After awarding of the contract and the contractor has developed a construction schedule, a TAB coordination meeting shall be held at the RCM's office with the TAB agency, the general contractor and his primary subcontractors (i.e. mechanical, electrical, building automation etc.) to develop a testing schedule for the project. The contractor shall submit copies of the proposed schedule two (2) weeks prior to this meeting to the RCM and TAB Agency.

 Note: The hot water and chilled water systems must be 100% complete to balance. The air systems are pressure independent and can be balanced by floors, risers, systems, etc., but once the total system is complete the total flows and system tracking will require finalization. Lab certification will be performed when the building is 100% operational and balanced.

3. Promptly correct deficiencies of materials and workmanship identified as delaying completion of TAB work.

4. Be responsible for any added costs to the Owner resulting from his failure to have the building and air conditioning systems ready for TAB when scheduled, or from his failure to correct deficiencies promptly.
B. Complete operational readiness of the building requires that construction status of the building shall permit the closing of doors, windows, ceilings installed, etc., to obtain simulated or projected operating conditions.

C. Complete operational readiness of the air conditioning systems also requires that the following be accomplished:

1. Air Distribution Systems:
 a. Verify installation for conformity to design.

2. Tabulated Data: The motor amperages, voltages shall be recorded showing "actual" and "nameplate" voltage and amperage and submitted and actual RPM. This applies to each piece of electrically driven air conditioning equipment in the system including supply and exhaust fans, fans of fractional horsepower, pumps, etc.

D. Notification of System Readiness:

1. After completion of the work in Paragraph 1.05 A through C above, the Contractor shall notify the Owner in writing, certifying that the work has been accomplished and that the building and the air conditioning systems are in operational readiness for testing, adjusting, and balancing. He shall include a copy of the tabulated data of Paragraph 1.05C.2 above.

2. The Owner will, in turn, notify the TAB firm of the readiness for balancing and forward copies of the Contractor's certification and the tabulated voltages and currents.

3. Should the TAB firm be notified as described above, and the TAB work commenced and the systems are found NOT to be in readiness or a dispute occurs as to the readiness of the systems, the Contractor shall request an inspection be made by duly appointed representative of the Owner, Architect, TAB firm and the Contractor. This inspection will establish to the satisfaction of the represented parties whether or not the systems meet the basic requirements for TAB services. Should the inspection reveal the TAB services notification to have been premature, all cost of the inspection and wasted work accomplished by the TAB firm shall be reimbursed to the appropriated parties by the Project Contractor.

1.05 RESPONSIBILITIES OF THE TAB FIRM

A. Refer to Section 23 05 93 entitled "System Testing, Adjusting and Balancing."

END OF SECTION
SECTION 23 07 19

PIPING INSULATION

PART 1 GENERAL

1.00. The following sections are to be included as if written herein:

A. 23 00 00 -- Basic Mechanical Requirements
B. 23 05 29 -- Sleeves, Flashings, Supports and Anchors
C. 23 05 53 -- Mechanical Identification

1.01. SECTION INCLUDES

A. Piping insulation
B. Jackets and accessories

1.02. PRODUCTS FURNISHED BUT NOT INSTALLED UNDER THIS SECTION

A. Section 23 63 13 – VRV Systems – DX Piping.

1.03. RELATED SECTIONS

A. Section 09 91 00 - Painting: Painting Insulation Jacket.

1.04. REFERENCES

A. ASTM B209 - Aluminum and Aluminum-Alloy Sheet and Plate.
E. ASTM C449 - Mineral Fiber Hydraulic-setting Thermal
G. ASTM C533 - Calcium Silicate Block and Pipe Thermal Insulation.
H. ASTM C534 - Preformed Flexible Elastomeric Cellular Thermal Insulation in Sheet and Tubular Form.
J. ASTM C552 - Cellular Glass Block and Pipe Thermal Insulation.
K. ASTM C578 - Preformed, Block Type Cellular Polystyrene Thermal Insulation.
L. ASTM C585 - Inner and Outer Diameters of Rigid Thermal Insulation for Nominal Sizes of Pipe and Tubing (NPS System).

M. ASTM C591 - Rigid Preformed Cellular Urethane Thermal Insulation.

N. ASTM C610 - Expanded Perlite Block and Pipe Thermal Insulation.

O. ASTM C640 - Corkboard and Cork Pipe Thermal Insulation.

Q. ASTM D1056 - Flexible Cellular Materials - Sponge or Expanded Rubber.

S. ASTM D2842 - Water Absorption of Rigid Cellular Plastics.

W. UL 723 - Surface Burning Characteristics of Building Materials.

1.05. SUBMITTALS

A. Submit under provisions of Section 23 00 00.

B. Product Data: Provide product description, list of materials ‘k’ value, ‘R’ value, mean temperature rating, and thickness for each service, and locations.

C. Samples: When requested, submit two samples of any representative size illustrating each insulation type.

D. Manufacturer’s Installation Instructions: Indicate procedures which ensure acceptable workmanship and installation standards will be achieved.

1.06. QUALITY ASSURANCE

A. All insulation, jacket, adhesives, mastics, sealers, etc., utilized in the fabrication of these systems shall meet NFPA for fire resistant ratings (maximum of 25 flame spread and 50 smoke developed ratings) and shall be approved by the insulation manufacturer for guaranteed performances when incorporated into their insulation system, unless a specific product is specified for a specific application, and is stated as an exception to this requirement. Certificates to this effect shall be submitted along with Contractor’s submittal data for this section of the Specifications. No material may be used that, when tested by the ASTM E84-89 test method, is found to melt, drip or delaminate to such a degree that the continuity of the flame front is destroyed, thereby resulting in an artificially low flame spread rating.

B. All surfaces to be insulated shall be clean and dry before applying the insulation. All sections of molded pipe covering shall be firmly butted together. Where an insulation
covering is applied, it shall lap the adjoining section of insulation by at least three inches (3"). Where insulation terminates, it shall be neatly beveled and finished. No insulation shall be applied until the pipe, duct, etc., have been pressure tested and found tight. Piping, flexible connections, flanges, valves, strainers, and unions shall be covered unless specifically noted otherwise. Flexible connections on duct shall not be covered. All materials used shall be fire retardant or nonflammable. Refer to Section 23 00 00.

C. All piping, equipment, ductwork, all plenums including metal and masonry construction, fans, etc., shall be insulated as indicated on the Drawings, as specified herein, and as required for a complete system. In each case, the insulation shall be equal to that specified and materials applied and finished as described in these Specifications.

D. To be considered, alternate materials shall have equivalent thermal and moisture resistance of the specified materials.

1.07. QUALIFICATIONS

A. All insulation shall be applied by mechanics skilled in this particular work and regularly engaged in such occupation.

B. All insulation shall be applied in strict accordance with these Specifications and with factory printed recommendations on items not herein mentioned. Unsightly, inadequate, or sloppy work will not be acceptable, and all such work shall be removed and replaced as many times as necessary to achieve an acceptable installation. The company performing the work of this section shall have a minimum of three years experience specializing in the trade.

1.08. DELIVERY, STORAGE, AND HANDLING

A. Deliver, store, protect, and handle products to site under provisions of Section 23 00 00.

B. Deliver materials to site in original factory packaging, labeled with manufacturer’s identification, including product thermal ratings and thickness.

C. Store insulation in original wrapping and protect from weather and construction traffic. Protect insulation against dirt, water, chemical, and mechanical damage.

1.09. ENVIRONMENTAL REQUIREMENTS

A. Maintain ambient temperatures and conditions required by manufacturers of adhesives, mastics, and insulation cements.

B. Maintain temperature during and after installation for minimum period of 24 hours.

C. All insulation materials to be asbestos free.

PART 2 PRODUCTS

2.08. CONDENSATE DRAIN AND DX PIPING

A. Condensate drain piping from fan and coil units, coil banks, drinking fountain refrigeration units, and other items of piping or equipment subject to condensation forming on the surface shall be insulated with a “25-50” rated, closed cell elastomeric thermal insulation. Elastomeric products shall be supplied in a pre-slit tubular form with a pressure sensitive
adhesive system for closure and vapor sealing of the longitudinal joint. All elastomeric insulating products shall be guaranteed not to react with copper piping. Piping insulation exposed to outdoors shall be provided with aluminum jacketing.

B. Drain piping from mechanical rooms, and other areas potentially receiving chilled water or condensate from air handlers, shall be similarly insulated for a minimum of 15 feet from the floor drains receiving the cold fluid.

2.09. PROTECTIVE JACKETING

A. Provide protective jacketing as described elsewhere.

B. Jacketing and fitting covers shall be .016 aluminum smooth as manufactured by Premetco or Childers. The jacket shall be pre-cut, pre-rolled, and lapped a minimum of two inches (2") in all directions to shed water. The metal shall be secured at each joint with a minimum of one each (1 ea.) ¾" wide .020 aluminum or stainless steel band and seal. The metal jacketing and fitting covers shall be fabricated of 0.016" aluminum or stainless steel with a smooth finish.

C. In indoor applications, Proto Corp. LoSmoke PVC jacketing and fitting covers may be used. Material shall have 25/50 rating and shall be limited to piping systems operating at 140 degrees or below.

PART 3 EXECUTION

3.01 EXAMINATION

A. Verify that piping has been tested before applying insulation materials.

B. Verify that surfaces are clean, foreign material removed, and dry.

3.02 INSTALLATION

A. Install materials in accordance with manufacturer’s instructions in the absence of specific instruction herein.

B. On exposed piping, locate insulation and cover seams in least visible locations, but not higher than at the side of the pipe at the “90°” position, with the seam lapped such that the lap is directed down.

C. Continue insulation through walls, sleeves, pipe hangers, and other pipe penetrations.

D. For insulated pipes conveying fluids above ambient temperature:

1. Provide standard jackets, with or without vapor barrier, factory applied or field applied.

2. Insulate fittings, joints, and valves with insulation of like material and thickness as adjoining pipe.

3.03 INSERTS, SUPPORTS and SHIELDS

A. Application: Piping 3/4 inch diameter or larger for all systems except direct buried.

B. Shields: Install between pipe hangers or pipe hanger rolls and inserts. Hangers shall be on the outside of the insulation and shall not be in contact with the pipe. Curved metal shields shall be used between the hangers or support points and the bottom of the insulated pipe for
insulated pipes 3/4” and larger. Curved metal shields shall be designed to limit the bearing stress on the insulation to 35 psi and shall be curved to fit up to mid-perimeter of the insulated pipe. Shields shall be made of galvanized iron, or black iron painted on both sides with two coats of aluminum paint. Required metal shield sizes are as follows:

<table>
<thead>
<tr>
<th>Nominal IPS</th>
<th>Metal Thickness</th>
<th>Lengths of Shield</th>
</tr>
</thead>
<tbody>
<tr>
<td>up thru 2"</td>
<td>14 gauge</td>
<td>12"</td>
</tr>
<tr>
<td>thru 6"</td>
<td>12 gauge</td>
<td>16"</td>
</tr>
<tr>
<td>and above</td>
<td>10 gauge</td>
<td>20"</td>
</tr>
</tbody>
</table>

C. Insert Location: Between support shield and piping and under the finish jacket.

D. Insert Configuration: Minimum 2" inches longer than length of shield, of same thickness and contour as adjoining insulation; may be factory fabricated.

E. Insert Material: Heavy density insulating material suitable for the planned temperature range, and the weight of the pipe.

F. The shields at support points shall be secured with ½” x 0.016” stainless steel bands and seals.

G. Finish insulation at supports, protrusions, and interruptions.

H. The application of the protective shields at rack and guide points in tunnels and in central chilling stations shall be as detailed on the accompanying Drawings.

I. In lieu of the above the following system of support may be used:

1. At the pipe support positions, the insulation and vapor barrier shall be continuous and shall not be punctured by the support. The insulation at the support shall be the full circumference of 5lbs/ft³ INSUL-PHEN Foam material to withstand the bearing loads transmitted from the pipe to the support, it shall extend for at least 1" on either side of the support to allow sealing of the joints with the pipe insulation jacket.

2. The load bearing insulation at the support shall be capable of withstanding the maximum static compressive loads generated by pipe supported at the centers shown in Table 1.

Variations: Pipe loads greater than those generated at the support centers shown in Table 1 shall be referred to the manufacturer to establish the length and density of the insulated support block. The support centers are based on the weight of Sch 80 pipe filled with water and covered with 1" thickness of 2.2 lbs/ft³ standard insulation including FSK/ASJ vapor barrier.
Table 1 K Block Support Centers

<table>
<thead>
<tr>
<th>Nominal Pipe Size</th>
<th>3/4</th>
<th>1 1/4</th>
<th>2</th>
<th>2 1/2</th>
<th>3</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>16</th>
<th>18</th>
<th>20</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max support centers (feet)</td>
<td>6.5</td>
<td>6.5</td>
<td>6.5</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Sch 80 pipe filled with water covered with 1" of Standard Insulation</td>
<td>6.5</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Metal Saddle Gauge (Galvanized Steel)</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>20</td>
<td>20</td>
<td>16</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>114</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Length of K Block (inches)</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>

1. The Insulation at supports shall be a Kooltherm K Block. K Blocks shall be faced with factory applied FSK/ASJ vapor barrier and fitted with a galvanized steel 180° saddle bonded to the bottom section of the K Block, for all pipe sizes 1 1/2" and larger.

2. The vapor barrier shall be completed by the use of a FSK/ASJ overlap and factory applied self-seal lap tape and sealed with vapor barrier adhesive.

3. At all support positions, other than those where the insulated pipe support block is surrounded by a clip or saddle in direct contact with the block, a block designed to accept the loads generated by the pipe shall be presented to the engineer for approval. e.g. Of the type Kooltherm products K Block. Ref:- Kooltherm sketch 106/2c for use with Roller or flat beam support.

4. In all cases where roller supports are used the length of the insulation and the wearing plate where fitted shall extend beyond the limits of the pipe movement.

3.04 Special Protection: All insulated piping in the mechanical rooms within 8'-0" of the floor shall be encased in a protective jacket, and where applicable, finish at top with nickel-plated brass flange plate with set screws or end joint sealing butt strips.

3.05 All exposed outdoor piping shall have metal jacket.

3.06 Fitting insulation shall be applied in same manner as pipe application. Protruding metal parts (such as valve stems) shall be completely sealed off. Fitting cover jacketing shall be equal to Gasco, Pabco or RPR Metals prefabricated fitting covers of 0.016" paper coated aluminum, secured as recommended by the manufacturer.

3.07 Valves, fittings, etc., in congested areas around coil and heat exchanger equipment, etc., shall be insulated by building up fitting segments and pre-molded sections as necessary.

3.08 No pipe supporting device (other than guides or anchors attached directly to the pipe) shall penetrate the insulation.
Insulation ‘R’ Value Schedule (R = thickness / k)

<table>
<thead>
<tr>
<th>Oper Temp</th>
<th>‘k’ @ Temp °F</th>
<th>Mean °F</th>
<th>Min. R value for each Pipe Size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>& less</td>
<td>1”</td>
</tr>
<tr>
<td>Hot (1)</td>
<td>350+</td>
<td>.33 @ 250</td>
<td>7.5</td>
</tr>
<tr>
<td>Hot (2)</td>
<td>251-350</td>
<td>.30 @ 200</td>
<td>6.5</td>
</tr>
<tr>
<td>Hot (3)</td>
<td>201-250</td>
<td>.29 @ 150</td>
<td>5.2</td>
</tr>
<tr>
<td>Hot (4)</td>
<td>141-200</td>
<td>.27 @ 125</td>
<td>5.6</td>
</tr>
<tr>
<td>Hot (5)</td>
<td>105-140</td>
<td>.26 @ 100</td>
<td>3.8</td>
</tr>
<tr>
<td>Cold (6)</td>
<td>40-55</td>
<td>.25 @ 75</td>
<td>2.0</td>
</tr>
<tr>
<td>Cold (7)</td>
<td>below 40</td>
<td>.25 @ 75</td>
<td>4.0</td>
</tr>
</tbody>
</table>

(1) HTHW; Steam @ over 120#
(2) HTHW; Steam @ 16# to 120#; med & hp condensate; water and fire line freeze protection
(3) HTHW; Steam @ 0# to 15#; LP Condensate
(4) HW
(5) HW
(6) Ch. Wtr; Dom. cold wtr; Storm; Cold condensate
(7) Ch. Wtr; Brine; Refrig lines

Minimum ‘R’ does not consider water vapor transmission and condensation. Additional insulation and/or vapor retarders may be required to limit water vapor transmission and condensation under extreme conditions.

A minus 15 percent tolerance, on the insulation performance listed shall be permitted for manufacturers’ standard insulation systems.

In non-conditioned mechanical rooms and all crawl spaces, insulation shall prevent formation of surface condensation under conditions of 95°F, 95%RH, and zero wind speed. Provide manufacturer’s certification of this performance on submittal data.

END OF SECTION

- o 0 o -
SECTION 23 73 00
DX SPLIT SYSTEM UNITS

PART 1 GENERAL
1.00 The following sections are to be included as if written herein:
 A. Section 23 00 00 – Basic Mechanical Requirements
 B. Section 23 05 29 – Sleeves, Flashings, Supports and Anchors
 C. Section 23 05 53 – Mechanical Identification

1.01 SECTION INCLUDES
 A. DX Split Systems.

1.02 RELATED SECTIONS
 A. Section 23 00 00 - Basic Mechanical Requirements.
 B. Section 26 05 19 - Cable, Wire and Connectors, 600 Volt.
 C. Section 26 27 26 - Wiring Devices and Floor Boxes.

1.03 REFERENCES
 A. AFBMA 9 - Load Ratings and Fatigue Life for Ball Bearings.
 B. AFBMA 11 - Load Ratings and Fatigue Life for Roller Bearings.
 D. AMCA 210 - Laboratory Methods of Testing Fans for Rating Purposes.
 E. AMCA 300 - Test Code for Sound Rating Air Moving Devices.
 G. AMCA 500 - Test Methods for Louver, Dampers, and Shutters.
 I. ARI 430 - Central-Station Air-Handling Units.
 J. ARI 435 - Application of Central-Station Air-Handling Units.
 K. ARI 610 - Central System Humidifiers.
 L. NEMA MG1 - Motors and Generators.
 M. NFPA 70 - National Electrical Code.
 N. SMACNA - HVAC Duct Construction Standards - Metal and Flexible.
 O. UL 900 - Test Performance of Air Filter Units.

1.04 SUBMITTALS
 A. Submit under provisions of Section 23 00 00.
B. Shop Drawings: Indicate assembly, unit dimensions, weight loading, required clearances, construction details, field connection details, and electrical characteristics and connection requirements.

C. Product Data:
1. Provide literature which indicates dimensions, weights, capacities, ratings, fan performance, gages and finishes of materials, and electrical characteristics and connection requirements.
2. Provide data of filter media, filter performance data, filter assembly, and filter frames.
3. Provide fan curves with specified operating point clearly plotted (clean and dirty filters).
4. Submit sound power level data for fan outlet, fan inlet and casing radiation at rated capacity.
5. Submit electrical requirements for power supply wiring including wiring diagrams for interlock and control wiring, clearly indicating factory-installed and field-installed wiring.

D. Manufacturer's Installation Instructions.

1.05 OPERATION AND MAINTENANCE DATA
A. Submit under provisions of Section 23 00 00.
B. Maintenance Data: Include instructions for lubrication, filter replacement, motor and drive replacement, spare parts lists, and wiring diagrams.

1.06 QUALIFICATIONS
A. Manufacturer: Company specializing in manufacturing the Products specified in this section with minimum three years documented experience, who issues complete catalog data on total product.

1.07 DELIVERY, STORAGE, AND HANDLING
A. Deliver, store, protect and handle products to site under provisions of Section 23 00 00.
B. Accept products on site in factory-fabricated protective containers, with factory-installed shipping skids and lifting lugs. Inspect for damage.
C. Store in clean dry place and protect from weather and construction traffic. Handle carefully to avoid damage to components, enclosures, and finish.

1.08 ENVIRONMENTAL REQUIREMENTS
A. Do not operate units for any purpose, temporary or permanent, until ductwork is clean, filters are in place, bearings lubricated, and fan has been test run under observation. Exemption – If the Construction Inspector agrees, the equipment may be run under the provisions of Section 23 00 00-1.35.

1.09 EXTRA MATERIALS
A. Furnish under provisions of Section 23 00 00.
B. Provide one set for each unit of fan belts, and filters.
1.10 SCHEDULES ON DRAWINGS:

A. In general, all capacities of equipment, and motor and starter characteristics are shown in schedules on the Drawings. Reference shall be made to the schedules for such information. The capacities shown are minimum capacities. Variations in the capacities of the scheduled equipment supplied under this contract will be permitted only with the written direction of the owner. All equipment shall be shipped to the job with not less than a prime coat of paint or as specified hereinafter. Insofar as is possible, all items of the same type (i.e., pumps, fans, etc.) shall be by the same manufacturer. Where installation instructions are not included in these Specifications or on the Drawings, the manufacturer's instructions shall be followed. All equipment affected by altitude shall be rated to operate at the altitude where it is installed.

PART 2 PRODUCTS

2.01 MANUFACTURERS

A. Dakin.
B. York.
C. Trane.
D. Substitutions: Under provisions of Section 23 00 00.

2.02 DX SPLIT SYSTEM UNITS

A. AIR HANDLING UNITS:

1. General: Provide the DX air handling units manufacturer's standard materials, components and accessories as indicated by product information, designed and constructed as recommended by the manufacturer and as required for a complete installation, except as otherwise indicated. Units shall be rated and tested in accordance with ARI 210, 240 and 360 and shall be UL listed and labeled in accordance with UL 465/1995.

2. Units: Air handling units shall be completely factory assembled in an insulated vertical housing, complete with DX cooling coils, condensate drain pan, fan, fan motor, hot gas reheat, primary 30% filters, controls and accessories.

3. Casings: Casings shall be constructed as required for wall-mounted standard. Casing shall be completely insulated with fire-retardant, permanent, odorless glass fiber material.

4. Refrigerant Circuits: Units up to 7-1/2 tons shall have a single refrigerant circuit. Units 10 tons and larger shall have dual refrigerant circuits. Each refrigerant circuit shall be controlled by a factory installed thermal expansion valve.

5. Evaporator Coils: Evaporator coils shall be configurated aluminum fins mechanically bonded to seamless copper tubing. Coils shall be factory pressure and leak-tested to 375 psig air pressure. Coils shall be arranged for draw-thru airflow and shall be completely factory assembled, including expansion valves. Coils shall have condensate drain pans with external drain connections on each side of the unit. Dual circuited coils shall be circuited in an intertwined configuration.

6. Cabinet Construction/Finish: Cabinet shall be constructed based on the manufacturer's standard wall-mounted unit. The blower cabinet shall be internally insulated.
7. **Fan Section**: Provide fan section (blower unit) as scheduled.

a. **Centrifugal Fans**: Provide double width, double inlet, multiblade type fans with air foil, forward curved or backward inclined blades, as scheduled. All fans shall be statically and dynamically balanced and tested after being installed on properly sized shafts. Fan shafts must not pass through their first critical speed as unit comes up to rated rpm. Fan wheels and scrolls shall be constructed of galvanized steel, all aluminum or fabricated steel protected with two coats of rust-inhibiting paint. Wheels and scrolls of fans used for outside air service shall be coated with two coats of fire resistant epoxy paint.

b. **Sheaves**: Permanent fan sheaves shall be nonadjustable with removable machined bushings, machined on all contact surfaces. Sheaves with over three grooves shall be dynamically balanced and so designated on each sheave. Fan sheaves with three grooves or less shall be statically balanced and if weights are required, they shall be welded to the sheave. Sheaves shall be manufactured by Browning, Eaton Yale and Towne, Dodge Manufacturing Company or Fort Worth Steel and Machinery Company.

 1) **Air Handling Units**: Provide a nonadjustable type sheave selected for the rated fan rpm as determined. Provide variable sheaves as required to determine correct fan rpm as established by tenant requirements. Furnish additional fixed sheaves as required after correct speed has been determined. All unused fixed sheaves shall become the property of the Owner.

c. **Belts**: Provide "V-groove" type suitable for the service intended with the capacities specified. Belts shall be closely matched and tagged for use prior to shipment. Recheck belts for proper match during operation and if necessary, replace with closely matched belt sets. Belts shall be Gates, Durkee-Atwood, Goodyear, Uniroyal or Browning.

 1) **General**: Provide belt guards for all fan drives mounted outside the unit housing. The finish of the guard shall be similar to that of the unit housing. Brace and fasten guards to prevent objectionable vibration. Provide tachometer openings at least 2" in diameter for checking fan and motor speeds. Openings shall be centered on shafts to allow checking rpm.

d. **Shafts**: Provide one piece design shafts, either solid or hollow tube with solid stub. Hollow tube with solid stub shafts shall be hot-formed, stress relieved, and manufactured by Pittsburgh Tubular Shifting, Inc. Fans and shafts shall not pass through their first critical speed as the unit comes up to rated rpm.

e. **Shaft Bearings**: Provide externally or internally mounted grease lubricated, self-aligning ball or roller bearings on each end of the shaft. Bearings shall have an average B-10 life as defined by AFBMA of 100,000 hours at design operating conditions. All bearings shall be the same size. Internally mounted bearings shall have grease lines extended so as to be readily accessible from the drive side of the unit. In addition, the bearing on the drive end of the shaft shall have grease line extended beyond the belt guard. All grease lines shall terminate in a zerk fitting. Bearings shall be by SKF, Sealmaster, Timken, or Fafnir.
8. **Blower Motor/Drive:** Blower motors shall be energy efficient 3 phase open drip-proof type. Refer to Section 23 05 13 for additional requirements. Blower drive shall be a belt drive with adjustable pitch pulleys.

9. **Blower Motor Starter:** A factory wired, unit mounted NEMA type motor starter with 3 phase overloads and a control power transformer shall be provided.

10. **Filter Rack/Filters:** Provide units with a filter rack and 2” disposable filters.

11. **Duct Connections:** Unit shall be designed for outside air, return air and supply air connections as shown on the drawings.

12. **Operating Controls:** Furnish unit controls including system of automatic sequencing, safety and operating controls consisting of the following:
 a. High temperature cutoff.
 b. Differential air pressure switch to verify air flow.
 c. 115/24 volt control transformer.
 d. Programmable Space Thermostat and humidistat (use of compatible Trane Thermostat and Humidistat is acceptable) for continuous fan operation during programmed occupied conditions.
 e. Firestat.
 f. Interlock unit controls with fan or air unit so that unit may not be energized with fan not in operation.

13. **Performance/Ratings:** Provide minimum performance as scheduled on drawings.

B. AIR-COOLED DX CONDENSING UNITS:

1. **General:** Provide the DX condensing unit manufacturer's standard materials, components and accessories as indicated by product information, designed and constructed as recommended by the manufacturer and as required for a complete installation, except as otherwise indicated. Units shall be UL 1995 listed and rated in accordance with ARI Standard 210/240, 360 and 270.

2. **Units:** Provide air cooled condensing units of the size, type, capacity and arrangement as shown and scheduled on the Drawings. Condensing units shall be assembled on a heavy-gauge integral steel mounting/lifting base. Units shall be weatherproofed and include hermetic compressor(s), condensing coils, fans and motors, controls and holding charge of refrigerant. Units shall have a control box access panel and removable end panels which allow access to all major components and controls.

3. **Unit Frame:** Frame shall be a welded assembly of heavy gauge zinc-coated, galvanized steel. Drainage holes shall be provided as required. Exterior surfaces shall be cleaned, phosphatized and coated with an epoxy resin primer and finished with an enamel finish. Units shall have removable end panels for access to all major components and controls.

4. **Refrigeration Circuits:** Units up to 7-1/2 tons shall have single compressors and a single refrigerant circuit for use with a single circuit cooling coil. Include refrigerant hot gas bypass circuit and hot gas reheat circuits. Units 10 tons and larger shall have two compressors and two independent refrigerant circuits for use with a dual circuit cooling coil. Each refrigeration circuit shall have an integral subcooling circuit and a refrigerant filter/dryer.
5. **Compressors:** Each compressor shall be a direct-drive hermetic type with centrifugal oil pump; two-point lubrication for each bearing and connecting rod; thermostatically controlled crankcase heater and well; high strength, ring-type suction and discharge valves; large gas passages and minimum clearance volumes; and internal spring isolation and muffling. External high and low cutout devices shall be provided. Evaporator defrost control provided in the indoor blower coil shall prevent compressor slugging by temporarily interrupting compressor operation when low evaporator coil temperatures are encountered.

6. **Compressor Motors:** Each compressor motor shall be suction gas-cooled and have a voltage utilization range of plus or minus 10 percent of nameplate voltage. Internal temperature and current-sensitive motor overloads shall protect compressors under loss of charge and other abnormal operating conditions.

7. **Condenser Coils:** Condenser coils shall be configured aluminum fins mechanically bonded to seamless copper tubing. Subcooling circuit(s) shall be provided as standard for each refrigeration circuit. Coils shall be factory pressure and leak-tested to 425 psig air pressure. Corrosion resistant metal grilles for coil protection shall be provided.

8. **Condenser Fans:** Fans shall be vertical discharge, direct-drive type, statically and dynamically balanced, with aluminum blades and zinc-plated steel hubs. Motors shall have permanently lubricated ball bearings, built-in current and thermal overload protection and weathertight slingers over bearings. The fan motors shall be mounted in rubber isolators. Corrosion resistant fan grills shall be provided.

9. **Controls:** Unit controls shall include a fused 24-volt control power transformer, magnetic contactors for each compressor, cooling low ambient fan switches, high pressure cut-out(s), low pressure cut-out(s) and reset relays. Unit completely factory-wired with necessary controls and terminal block for connection of field control power wiring. A solid state anti-short-cycle timer shall be available for retrofit on all units to prevent rapid on-off compressor cycling in light load conditions. A time-delay relay shall be provided in all dual compressor units to prevent both compressors from coming on line simultaneously.

10. **Refrigerant/Oil Charge:** Units shall be shipped from the factory with a sufficient charge of refrigerant and oil for the complete system when used with pre-charged refrigerant lines.

11. **Refrigerant Line Connections:** Connections shall be either compression or sweat type. Brass liquid and suction line service valves, gauge/charging ports and a suction and discharge pressure gauge panel shall be provided.

12. **Warranty:** The manufacturers one year parts and labor and five year extended (non pro-rated) compressor warranty shall be provided.

PART 3 EXECUTION

3.01 INSTALLATION

A. Install in accordance with manufacturer's instructions.

B. Install in conformance with ARI 435.

END OF SECTION
SECTION 26 00 00

BASIC ELECTRICAL REQUIREMENTS

PART 1 GENERAL

1.1 WORK INCLUDED

A. General Requirements specifically applicable to Division 26.

B. The Contractor shall be responsible for:

1. The work included consists of furnishing all materials, supplies, equipment and tools, and performing all labor and services necessary for installation of a completely functional power, lighting, fire alarm and signaling systems. Complete systems in accordance with the intent of Contract Documents.

2. Coordinating the details of facility equipment and construction for all Specification Divisions, which affect the work covered under this Division.

3. Furnishing and installing all incidental items not actually shown or specified, but which are required by good practice to provide complete functional systems.

4. Temporary power service and lighting for construction. Coordinating all shutdown dates and schedules with Owner's Representative and obtain all work-permits required by Owner.

C. Intent of Drawings:

1. The Drawings are necessarily diagrammatic by their nature, and are not intended to show every connection in detail or every device or raceway in its exact location, unless specifically dimensioned. The Contractor shall carefully investigate structural and finish conditions and shall coordinate the work in order to avoid interference between the various phases of work. The Contractor shall be responsible for the proper routing of raceway, subject to prior review by the Owner and Engineer. Work shall be organized and laid out so that it will be concealed in furred chases and suspended ceilings, etc., in finished portions of the building, unless specifically noted to be exposed. All work shall be installed parallel or perpendicular to the lines of the building unless otherwise noted.

2. The intent of the Drawings is to establish the type of systems and functions, but not to set forth each item essential to the functioning of the system. The drawings and specifications are cooperative, and work or materials called for in one and not mentioned in the other shall be provided. Review pertinent drawings and adjust the work to conditions shown. In case of doubt as to work intended, or where discrepancies occur between drawings, specifications, and actual conditions, immediately notify the Architect/Engineer and the Owner's representative, and propose a resolution.

1.2 RELATED WORK

A. This Section shall be used in conjunction with the following other specifications and related Contract Documents to establish the total general requirements for the project electrical systems and equipment.

1. Division 01 Sections included in the project specifications.
2. The contract.

1.3 DESIGN CRITERIA

A. Equipment and devices to be installed outdoors or in enclosures where the temperatures
are not controlled shall be capable of continuous operation under such conditions per manufacturer’s requirements.

B. Compliance by the Contractor with the provisions of this Specification does not relieve him of the responsibilities of furnishing equipment and materials of proper design, mechanically and electrically suited to meet operating guarantees at the specified service conditions.

C. Electrical components shall be UL listed and labeled.

1.4 REFERENCE CODES AND STANDARDS, REGULATORY REQUIREMENTS

A. Standards of the following organizations as well as those listed in Division 01, may be referenced in the specification. Unless noted otherwise, references are to standards or codes current at the time of bidding.

1. Association of Edison Illuminating Companies (AEIC)
2. American National Standards Institute (ANSI)
3. Institute of Electrical and Electronics Engineers (IEEE)
4. Insulated Cable Engineers Association (ICEA)
5. National Electrical Code (NEC)
6. National Electrical Manufacturers Association (NEMA)
7. Electrical Safety in the Workplace
8. National Fire Protection Association (NFPA)
9. Underwriter’s Laboratories (UL)

B. Work, materials and equipment must comply with the latest rules and regulations of the following.

1. National Electrical Code (NEC)
2. Electrical Safety in the Workplace
3. Occupational Safety and Health Act (OSHA)
4. American with Disability Act (ADA)
5. American Society for Testing and Materials (ASTM)
6. University of Texas (UT) System
7. Applicable state and federal codes, ordinances and regulations

C. Discrepancies. The drawings and specifications are intended to comply with listed codes, ordinances, regulations and standards. Where discrepancies occur, immediately notify the Owner’s representative in writing and ask for an interpretation. Should installed materials or workmanship fail to comply, the Contractor is responsible for correcting the improper installation. Additionally, where sizes, capacities, or other such features are required in excess of minimum code or standards requirements, provide those specified shown.

D. Contractor shall obtain permits and arrange inspections required by codes applicable to this Section and shall submit written evidence to the Owner and Engineer that the required permits, inspections and code requirements have been secured.

1.5 SUBMITTALS

A. Submit the following in addition to and in accordance with the requirements of Division 01
1. Include inspection and permit certificates and certificates of final inspection and acceptance from the authority having jurisdiction.

2. Manufacturer’s standardized schematic diagrams and catalog cuts shall not be acceptable unless applicable portions of it are clearly indicated and non-applicable portions clearly deleted or crossed out.

3. All schematic, connection and/or interconnection diagrams in accordance with the latest edition of NEMA.

4. Provide submittals as required by individual specification Section.

B. Provide the following with each submittal:

1. Catalog cuts with manufacturer’s name clearly indicated. Applicable portions shall be circled and non-applicable portions shall be crossed out.

2. Line-by-line specification review by equipment manufacturer and contractor with any exceptions explicitly defined.

C. Equipment Layout Drawing: 1/8-inch scale minimum drawings indicating electrical equipment locations. Dimensions for housekeeping pads should be indicated on these drawings. Indicate routing of conduit 2 inches and over on these drawings.

D. Within the specified time window after award of contract, submit list of equipment and materials to be furnished.

1. Itemize equipment and material by specification Section number; include manufacturer and identifying model or catalog numbers.

2. Replace rejected items with an acceptable item within 2 weeks after notification of rejection.

3. If a satisfactory replacement is not submitted within a two-week period, owner will notify contractor as to equipment manufacturer or type and make or material to be furnished. Provide designated items at no additional cost to owner.

E. As-Built Record Drawings: The Contractor shall maintain a master set of As-Built Record Drawings that show changes and any other deviations from the drawings. The markups must be made as the changes are done. At the conclusion of the job, these As-Built Record Drawings shall be transferred to AutoCad electronic files, in a format acceptable to the Owner, and shall be complete and delivered to the Owner’s Representative prior to final acceptance. Refer to 01210 Project Administration for other requirements.

1.6 SAFETY

A. The Contractor shall follow the safety procedures in addition to, and in accordance with, the requirements of Project Safety Manual (PSM).

1. The Contractors shall be responsible for training all personnel under their employ in areas concerning safe work habits and construction safety. The Contractor shall continually inform personnel on hazards particular to this project and update the information as the project progresses.

2. The Contractor shall secure all electrical rooms, to limit access, prior to energizing any high voltage (2.4KV or higher) switchgear and shall control access during the project after energization. The Contractor shall post and maintain warning and caution signage in areas where work is on going near energized equipment. The Contractor shall cover all energized live parts when work is not being done in the equipment. This includes lunch and breaks.
3. The Contractor shall strictly enforce OSHA lock out/tag out procedures. Initial infractions shall result in a warning; a second infraction shall result in the removal of the workman and his foreman from the site. Continued infractions shall result in removal of the Contractor from the site.

1.7 SHORING AND EQUIPMENT SUPPORTS

A. The Contractor shall provide all permanent and temporary shoring, anchoring, and bracing required to make all parts absolutely stable and rigid; even when such shoring, anchoring, and bracing are not explicitly called for.

B. The Contractor shall adequately support all freestanding panels, motor control centers, enclosures, and other equipment. This shall include bolting to the floor or solid structural steel to prevent tipping. Install free-standing electrical equipment on 4" thick concrete housekeeping pads that are provided by others. Under no condition shall equipment be fastened to non-rigid building steel (i.e., removable platform steel gratings, handrails, etc.).

C. The Contractor shall provide racks and supports, independently mounted at structure, to support electrical equipment and systems supplied and installed under this contract. At no time shall the Contractor mount or suspend equipment from other disciplines’ supports.

1.8 TEMPORARY POWER REQUIREMENTS

A. Provide power distribution system sufficient to accommodate construction operations requiring power, use of power tools, electrical heating, lighting, and start-up/testing of permanent electric-powered equipment prior to its permanent connection to electrical system. Provide proper overload protection. Ground fault circuit interrupters (GFCI) are to be used on all 120-volt, single-phase, 15 and 20 amp receptacle outlets where portable tools and equipment are used. Ground fault circuit interrupters shall be tested weekly by the Contractor.

B. Temporary power feeders shall originate from a distribution panel. The conductors shall be multi-conductor cord or cable per NEC for hard and extra-hard service multi-conductor cord.

C. Branch circuits shall originate in an approved receptacle or panelboard. The conductors shall be multi-conductor cord or cable per NEC for hard and extra-hard service multi-conductor cord. Each branch circuit shall have a separate equipment grounding conductor.

D. All receptacles shall be of the grounding type and electrically connected to the grounding conductor.

E. Provide temporary lighting by factory-assembled lighting strings or by manually-assembled units. All lamps for general lighting shall be protected from accidental contact or breakage. Protection shall be provided by installing the lights a minimum of 7 feet from the work surface or by lamp holders with guards. Branch circuits supplying temporary lighting shall not supply any other load. Provide sufficient temporary lighting to ensure proper workmanship by combined use of day lighting, general lighting, and portable plug-in task lighting. Comply with OSHA required foot-candle levels and submit plan for approval by the owner.

F. For temporary wiring over 600 volts, suitable fencing, barriers, or other effective means shall be provided to prevent access of anyone other than authorized and qualified personnel.

G. Temporary power cords shall be kept off the ground or floor. The Contractor shall provide temporary supports as required to keep temporary cords off the ground or floor.

1.9 SUBSTITUTION OF MATERIALS AND EQUIPMENT:
A. Refer to Uniform General Conditions and Supplementary General Conditions for substitution of materials and equipment.

B. The intent of the Drawings and/or Specifications is neither to limit products to any particular manufacturer nor to discriminate against an "APPROVED EQUAL" product as produced by another manufacturer. Some proprietary products are mentioned to set a definite standard for acceptance and to serve as a reference in comparison with other products. When a manufacturer's name appears in these Specifications, it is not to be construed that the manufacturer is unconditionally acceptable as a provider of equipment for this project. The successful manufacturer or supplier shall meet all of the provisions of the appropriate specification(s).

C. The specified products have been used in preparing the Drawings and Specifications and thus establish minimum qualities with which substitutes must at least equal to be considered acceptable. The burden of proof of equality rests with the Contractor. The decision of the designer is final.

D. When requested by the Architect/Engineer, the Contractor shall provide a sample of the proposed substitute item. In some cases, samples of both the specified item and the proposed item shall be provided for comparison purposes.

E. Timeliness: The burden of timeliness in the complete cycle of submittal data, shop Drawings, and sample processing is on the Contractor. The Contractor shall allow a minimum of six (6) weeks time frame for review of each submission by the office of the design discipline involved after receipt of such submissions by that design discipline. The Contractor is responsible for allowing sufficient time in the construction schedule to cover the aforementioned cycles of data processing, including time for all resubmittal cycles on unacceptable materials, equipment, etc. covered by the data submitted. Construction delays and/or lack of timeliness in the above regard are the responsibility of the Contractor and will not be considered in any request for scheduled construction time extensions and/or additional costs to the Owner.

F. All equipment installed on this project shall have local representation; local factory authorized service, and a local stock of repair parts.

G. Acceptance of materials and equipment will be based on manufacturer's published data and will be tentative subject to the submission of complete shop Drawings indicating compliance with the contract documents and that adequate and acceptable clearances for entry, servicing, and maintenance will exist. Acceptance of materials and equipment under this provision shall not be construed as authorizing any deviations from the Specifications, unless the attention of the Architect/Engineer has been directed in writing to the specific deviations. Data submitted shall not contain unrelated information unless all pertinent information is properly identified.

H. Certification: The Contractor shall carefully examine all data forwarded for approval and shall sign a certificate to the effect that the data has been carefully checked and found to be correct with respect to dimensions and available space and that the equipment complies with all requirements of the Specifications.

I. Physical Size of Equipment: Space is critical; therefore, equipment of larger sizes than shown, even though of specified manufacturer, will not be acceptable unless it can be demonstrated that ample space exists for proper installation, operation, and maintenance.

J. Should a substitution be accepted, and should the substitute material prove defective, or otherwise unsatisfactory for the service intended within the guarantee period, this material or equipment shall be replaced with the material or equipment specified at no additional cost to the Owner.

PART 2 PRODUCTS
2.1 MATERIALS AND EQUIPMENT
A. Materials and Equipment: Labeled and/or listed as acceptable to the authority having jurisdiction as suitable for the use intended. Materials shall be of a standard industrial quality if no specifications or specific model numbers are given.
B. Where two or more units of the same class of material are required, provide products of a single manufacturer. Component parts of materials or equipment need not be products of the same manufacturer.
C. All materials shall be new and unused.
D. Provide non-metallic material in corrosive areas or as otherwise specified.

PART 3 EXECUTION
3.1 WORKMANSHIP
A. Install work in compliance with NEC latest edition.
B. Install material and equipment in accordance with manufacturers’ instructions. Provide calibrated torque wrenches and screwdrivers and tighten all terminals, lugs, and bus joints using it.
C. Comply with startup procedures as defined by Construction Manager and Owner.
D. Arrange electrical work in a neat, well-organized manner. Do not block future connection points of electrical service. Install all electrical work parallel or perpendicular to building lines unless noted otherwise, properly supported with purpose-designed apparatus, in a neat manner.
E. Apply, install, connect, erect, use, clean, adjust, and condition materials and equipment as recommended by the manufacturers in their published literature.
F. Make opening through masonry and concrete by core drilling in acceptable locations. Restore openings to original condition to match remaining surrounding materials.

3.2 SERVICE CONTINUITY
A. Maintain continuity of electric service to all functioning portions of process or buildings during the hours of normal use. Phase construction work to accommodate Owner’s occupancy requirements.
B. Arrange temporary outages for cutover work with the Owner. Keep the outages to a minimum number and minimum length of time.
C. All service outages shall be requested in writing a minimum of two weeks prior to the date. Owner reserves the right to postpone shutdowns up to 24 hours prior to the shutdown at no additional cost. Outage requests shall include a schedule of the work to be performed and the time requirements.
D. The Contractor shall obtain all appropriate Owner permits for working in equipment.

3.3 HAZARDOUS LOCATIONS
A. Equipment, wiring, devices, and other components located within hazardous areas to be of appropriate type per NFPA requirements.
B. Ground exposed non-current carrying parts of entire electrical system in hazardous areas, in accordance with NEC and as instructed by Owner.

3.4 SLEEVES AND SEALS
A. Provide sealing and/or fire stopping where electrical equipment passes through walls, ceilings, and floors. Seals shall be watertight and/or fire rated as applicable.
3.5 CONSTRUCTION REVIEW
 A. The Engineer or Owner’s representative will review and observe installation work to insure compliance by the Contractor with requirements of the Contract Documents.
 B. Review, observation, assistance, and actions by the Engineer or Owner’s representative shall not be construed as undertaking supervisory control of the work or of methods and means employed by the Contractor. The review and observation activities shall not relieve the Contractor from the responsibilities of these Contract Documents.
 C. The fact that the Engineer or Owner’s representative do not make early discovery of faulty or omitted work shall not bar the Engineer or Owner’s representative from subsequently rejecting this work and insisting that the Contractor make the necessary corrections.
 D. Regardless of when discovery and rejection are made, and regardless of when the Contractor is ordered to correct such work, the Contractor shall have no claim against the Engineer or Owner’s representative for an increase in the Contract price, or for any payment on account of increased cost, damage, or loss.

3.6 WARRANTY
 A. Provide warranties in accordance with the requirements of Uniform General and Supplementary Conditions (UGC).

END OF SECTION
SECTION 26 05 00
BASIC ELECTRICAL MATERIALS AND METHODS

PART 1 GENERAL

1.1 WORK INCLUDED
A. Hinged cover enclosures and cabinets
B. Contactors
C. Control relays
D. Push buttons, and selector switches
E. Terminal blocks and accessories
F. Penetration sealing systems (fire stops)
G. Electrical/control portion of HVAC work covered by Division 23 pertaining basic electrical materials and methods shall follow the requirement set forth by this specification.

1.2 APPLICABLE CODES AND STANDARDS
A. NFPA 70, National Electrical Code (latest edition)
C. Applicable publications of NEMA, ANSI, IEEE, and ICEA
D. Underwriters Laboratories, Inc. Standards (UL)
E. Federal, city, state, and local codes and regulations having jurisdiction
F. OSHA requirements
G. NEMA 250 - Enclosures for Electrical Equipment (1000 Volts Maximum)
H. NEMA WD 1 – General-Purpose Wiring Devices
I. UL 98 - Enclosed Switches

1.3 INTENT
A. This Section is not, and shall not be interpreted to be, a complete listing of all materials or equipment that is Contractor furnished and erected. It is intended to clarify and further define the Contractor scope of work, procurement, and responsibilities for those incidental materials that are not specified by other specifications, but important to a complete and operational system.
B. The Contractor shall furnish all equipment and materials, whether or not specified in other Sections of specification and on drawings, for installation and connection required to place equipment into satisfactory operating service. The Contractor shall review the Drawings and specifications for clarification of his responsibility in the handling and installation of equipment and material. Where applicable, and not in contradiction with the Drawings and specifications, the Contractor shall install and connect the equipment in accordance with the manufacturer's recommendations and instructions.
C. All materials and equipment shall be of types and manufacturer specified wherever practical. Should materials or equipment so specified be unattainable, the Contractor shall submit the description and manufacturer's literature, reason for substitution request and shall secure the approval of the Engineer before substitution of other material or equipment is purchased. This Section establishes performance requirements and the quality of
equipment acceptable for use and shall in no way be construed to limit procurement from other manufacturer.

1.4 SUBMITTALS

A. Provide submittals in addition and in accordance with Section 26 00 00.UT, Basic Electrical Requirements, and Division 01 for submittal requirement.

B. Submit manufacturer's literature and specification data sheets for each type of basic material, which is applicable to the project.

1.5 DELIVERY, STORAGE AND HANDLING

A. Provide factory-wrapped waterproof flexible barrier material for covering materials, where applicable, to protect against physical damage in transit. Damaged materials shall be removed from project site.

B. In their factory-furnished coverings, store materials in a clean, dry indoor space, which provides protection against the weather.

PART 2 PRODUCTS

2.1 ENCLOSURES AND CABINETS

A. Enclosures and cabinets for all Contractor furnished electrical equipment and devices shall be suitable for the location and environmental conditions and shall be of the NEMA type as shown in Table 16050-1. Exceptions shall be specifically designated on the Drawings.

<table>
<thead>
<tr>
<th>Location</th>
<th>Environment</th>
<th>Enclosure Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indoor Utility</td>
<td>Dry, subject to dust, falling dirt and dripping non-corrosive liquids</td>
<td>NEMA 12</td>
</tr>
<tr>
<td>Indoor</td>
<td>Clean, Dry</td>
<td>NEMA 1</td>
</tr>
<tr>
<td>Outdoor</td>
<td>Subject to windblown dust and rain, splashing water, and hose-directed water</td>
<td>NEMA 4</td>
</tr>
<tr>
<td>Indoor</td>
<td>Wet, subject to hose-directed water</td>
<td>NEMA 4</td>
</tr>
<tr>
<td>Outdoor</td>
<td>Subject to falling rain, sleet, and external ice formation</td>
<td>NEMA 3R</td>
</tr>
<tr>
<td>Indoor or Outdoor</td>
<td>Subject to corrosion, windblown dust and rain, splashing water and hose-directed water</td>
<td>NEMA 4X</td>
</tr>
</tbody>
</table>

B. Enclosures shall have the following properties:

 a. Type 1: Steel.
 b. Type 4: Steel with gasket door, rain tight.
 c. Type 4X: Stainless steel, (polycarbonate or fiberglass reinforced polyester (FRP) in corrosive areas).
d. Type 12: Steel with gasketed door, dust-tight.

C. Finish: Exterior, manufacturer's standard gray enamel finish; interior, white enamel finish.

D. Covers: Continuous hinge, held closed by flush latch operable by hasp and staple for padlock. Where required for NEMA ratings, gaskets shall be neoprene rubber.

E. Interior Panel for Mounting Terminal Blocks or Electrical Components: 14-gauge steel, white enamel finish.

F. Provide protective pocket inside front cover with schematic diagram, connection diagram, and layout drawing of control wiring and components within enclosure.

G. Forced Ventilation: Where indicated, provide 115V single-phase fan motor, filtered with air plenum, finger guard, and stainless steel grille. Washable aluminum filter, accessible for cleaning from outside the enclosure; 20,000-hour continuous operation without lubrication or service. Provide matching exhaust grille assembly. Mount fan in lower side corner, exhaust grille in opposite upper side corner.

2.2 CONTACTORS

A. Acceptable Manufacturers
 1. General Electric Company
 2. Square D Company
 3. Other manufacturers equal in design and function will be considered upon A/E approval following substitution procedure in 26 00 00.UT and Division 01 for substitution requirement.

B. Contactors: NEMA ICS 2; electrically held or mechanically held as indicated on Drawings. Two-wire control for electrically held contactors and three-wire control for mechanically held contactors.

C. Enclosure: NEMA 1 unless indicated otherwise on Drawings.

D. Control Transformer: Provide when indicated on Drawings. Minimum capacity shall be 100 VA. Provide primary and secondary fuse protection.

E. Coil operating voltage; 110 volts, 60 Hz or as per drawings.

F. Size: NEMA ICS 2; size as indicated on Drawings.

G. Contacts: As indicated on Drawings; 600 Volts, 60 Hz.

H. Provide solderless pressure wire terminals on bus terminals suitable for mounting in panelboard as indicated on Drawings.

2.3 CONTROL RELAYS

A. Acceptable Manufacturers
 1. General Electric Type CR120A
 2. Cutler-Hammer Type M-300
 3. Square D Company
 4. Allen-Bradley
 5. Other manufacturers equal in design and function will be considered upon A/E approval following substitution procedure in 26 00 00.UT and Division 01 for substitution requirement.
B. Provide magnetic control relays, NEMA Class A: A300 (300 volts, 10 amps continuous, 7,200 VA make, 720 VA break), industrial control type with field-convertible contacts, and meeting the requirements of NEMA ICS 2.

C. Where time delay relays are specified or required, unless otherwise noted, provide magnetic control relays with a solid-state timer attachment adjustable from 0.2 to 60 seconds (minimum) or with range as indicated. Provide with field convertible from ON delay to OFF delay and vice versa.

D. Where latching (mechanically held) relays or motor thermal detector relays are specified, provide magnetic control relays with mechanical latch attachment with unlatching coil and coil clearing contacts.

2.4 PUSH BUTTONS, AND SELECTOR SWITCHES

A. Acceptable Manufacturers
 1. Allen-Bradley
 2. Square D
 3. Cutler Hammer
 4. Seimens
 5. Other manufacturers equal in design and function will be considered upon A/E approval following substitution procedure in 26 00 00.UT and Division 01 for substitution requirement.

B. For non-hazardous, indoor, dry locations, including control panels, and individual stations, provide heavy duty, NEMA 13, oil tight type pushbuttons, indicating lights, selector switches, and stations for these devices.

C. For non hazardous, outdoor, or normally wet locations, or where otherwise indicated, provide heavy duty corrosion resistant, NEMA 4, watertight type pushbuttons, indicating lights, or selector switches mounted in NEMA 4 watertight enclosures. Provide special gasketing required to make complete station watertight.

D. For hazardous locations, provide control station listed by UL for Class I, Divisions 01 and 02, Groups C and D; Class II, Division 01 and 02, Groups E, F, and G. Specific type shall be in accordance with area classification as indicated on the Drawings.

E. For corrosive locations, provide nonmetallic components and enclosures meeting NEMA Type 4X.

F. Provide devices meeting the requirements of NEMA ICS 2, and having individual, extra large nameplates indicating their specific function. Provide push-button stations with laminated plastic nameplates indicating the drive they control. Provide contacts with NEMA designation rating A600. Install provisions for locking pushbuttons and selector switches in the OFF position wherever lockout provisions are indicated. Nameplates shall be as specified in Section 16195.

G. Utilize selector switches having standard operating levers. All indicating lights shall be LED type, push-to-test type. Provide ON or START pushbuttons colored black. Provide OFF or STOP pushbuttons colored red.

2.5 TERMINAL BLOCKS AND ACCESSORIES

A. Signal And Control Terminals
 1. Acceptable Manufacturers
 a. Phoenix Contact
b. Buchanan

c. Weidmüller

d. Entrelec

e. Other manufacturers equal in design and function will be considered upon A/E approval following substitution procedure in 23 00 00 and Division 01 for substitution requirement.

2. Signal and Control Terminals: Modular construction type, DIN 46 277/3 channel mounted; screw clamp compression connectors, rated 300 volts. Minimum terminal width of 0.24-inch, capable of holding two No. 12 or two No. 14 AWG conductors in each connector. Terminal identification numbers shall be thermoset characters (black) on a white background. Provide 25 percent spare terminals.

B. Power Terminals

1. Acceptable Manufacturers

a. Buchanan

b. Ilsco

c. Square D Company

d. Burndy

e. Other manufacturers equal in design and function will be considered upon A/E approval following substitution procedure in 26 00 00 and Division 01 for substitution requirement.

2. Power Terminals: Unit construction type, closed-back type, with tubular pressure screw connectors, rated 600 volts, size as required. Provide 25 percent spare terminals.

2.6 PENETRATION SEALING SYSTEMS (FIRE STOPS)

A. Provide penetration sealing where conduit, cable tray, etc. pass through rated walls, ceilings, and floors. See Section 07840, Fire Stopping, and Section 07900, Joint Sealants, for sealing requirements and systems.

2.7 UL LISTING

A. All equipment and materials shall be new and conform to the requirements of this Section. All equipment and materials shall be UL listed, and shall bear their label whenever standards have been established and level service is regularly furnished. All equipment and materials shall be of the best grade of their respective kind for the purpose.

PART 3EXECUTION

3.1 FABRICATION - CONTROL ENCLOSURES AND CABINETS

A. Shop assembles enclosures and cabinets housing terminal blocks or electrical components in accordance with NEMA ICS 6.

3.2 INSTALLATION - ENCLOSURES AND CABINETS

A. Install cabinets and enclosures plumb; anchor securely to wall and structural supports at each corner, minimum. Direct attachment to dry wall is not permitted.

B. Provide accessory feet for freestanding equipment enclosures.

C. Install trim plumb.
3.3 ERECTION OF EQUIPMENT

A. Manufacturer's Installation Instructions: Where furnished or called for by the manufacturer's installation instructions shall be considered a part of this specification and fully complied with. Where the Contractor damages the finishing coat of paint in existing or completed areas, he shall refinish with matching paint.

B. Mounting Heights: Individual safety switches and buttons and devices shall normally be installed at the following mounting heights, when not specified on the Drawings.

1. Safety Switches: 6 feet 0 inches (to top).
2. Pushbuttons: 4 feet 0 inches (to center).
3. Control Panels: 6 feet 0 inches (to top).

C. Mounting: Equipment and control devices shall be supported independent of conduit connections. Panels or cabinets shall be mounted on metal frame supports independently of equipment. Control devices and metal enclosures shall be bolted or welded to steel channel or steel plate. All electrical equipment and devices not covered by the above, such as miscellaneous switches, thermostats, duct switches, temperature switches, floats, photoelectrical devices, and similar electrical devices shall be located and set as suitable for the application. Where control panels are provided as part of the equipment racks mounted on the floor, they shall be provided to support conduits and flexible connections to control panels.

3.4 COORDINATION

A. Exact location of all electrical equipment, devices and fixtures shall be determined in field by contractor and verified by Engineer's field representative prior to installation.

END OF SECTION
SECTION 26 05 33
RACEWAYS, CONDUITS AND BOXES

PART 1 GENERAL

1.1 WORK INCLUDED
A. Raceways:
 1. Surface metal raceways.
 2. Multi-outlet assemblies.
 3. Wireways.
 4. Indoor service poles.
B. Conduit:
 1. Rigid metal conduit and fittings. (RGS)
 2. Intermediate metal conduit and fittings. (IMC)
 3. Electrical metallic tubing and fittings. (EMT)
 4. Flexible metal conduit and fittings.
 5. Liquid-tight flexible metal conduit and fittings.
 6. PVC coated rigid steel conduit.
C. Boxes:
 1. Wall and ceiling outlet boxes.
 2. Pull and junction boxes.
D. Electrical/control portion of HVAC work covered by Division 23 pertaining raceway, conduit
 and boxes shall follow the requirement set forth by this specification.

1.2 REFERENCES
A. NFPA 70 – National Electrical Code, latest edition
B. ANSI C80.1 - Rigid Steel Conduit, Zinc-Coated
C. ANSI C80.3 - Electrical Metallic Tubing, Zinc-Coated
D. ANSI/NEMA FB 1 - Fittings and Supports for Conduit and Cable Assemblies
E. EMA TC 3 - PVC Fittings for Use with Rigid PVC Conduit and Tubing
F. ANSI/NEMA OS 1 - Sheet-Steel Outlet Boxes, Device Boxes, Covers and Box Supports
G. NEMA 250 - Enclosures for Electrical Equipment (1000 Volts Maximum)
H. ANSI/NEMA TC 2 – Electrical Plastic Tubing (EPT) and Conduit (EPC-40 and EPC-80)
I. ANSI/UL 1 – Flexible Metal Conduit
J. ANSI/UL 5 – Surface Metal Raceways and Fittings
K. ANSI/UL 360 – Liquid-tight Flexible Steel Conduit
L. ANSI/UL 467 – Electrical Grounding and Bonding Equipment
M. ANSI/UL 651 – Schedule 40 and 80 Rigid PVC Conduit (underground use only)
N. ANSI/UL 797 – Electrical Metal Tubing
O. ANSI/UL 870 – Wireways, Auxiliary Gutters and Fittings
P. NEMA RN 1 – Polyvinyl Chloride (PVC) Externally Coated galvanized Rigid Steel Conduit and Intermediate Metal Conduit
Q. NEMA VE 1 – Metallic Cable Tray Systems
R. UL 6 – Rigid Metal Conduit
S. ANSI/UL 5C – Surface Raceways and Fittings for Use with Data, Signal, and Control Circuits
T. ANSI/UL 498 – Attachment Plugs and Receptacles
U. ANSI/UL 943 – Ground Fault Circuit Interrupters

1.3 SUBMITTALS
A. Provide submittals in accordance with and in addition to Section 26 00 00.UT, Basic Electrical Requirements, and Section 01330, Submittal Procedures.
B. Shop drawings consisting of a complete list of equipment and materials, which will be used for the project, including manufacturer's descriptive and technical literature, catalog cuts and installation instructions.
C. Sealing/fire stopping materials and details.

1.4 STORAGE AND HANDLING
A. Handle materials carefully to avoid damage, breaking, denting and scoring. Damaged equipment or materials shall not be installed.
B. Store materials in a clean dry space and protected from the weather.

PART 2 PRODUCTS
2.1 CONDUIT AND FITTINGS
A. Conduit and fittings for all electrical systems on this project shall include the following:
 1. Service entrance
 2. Electrical power and lighting feeders
 3. Electrical power and lighting circuits
 4. Telephone systems
 5. Control systems (other than HVAC)
 6. Fire alarm and signaling systems
 7. CCTV rough-in system
 8. Clock and bell system
 9. Computer system rough-in
 10. Sound system rough-in
 11. Other electrical systems
B. For each electrical wireway system indicated, provide a complete assembly of conduit,
tubing or duct with fittings including, but not necessarily limited to, connectors, nipples, couplings, locknuts, bushings, expansion fittings, other components and accessories as needed to form a complete system of the same type indicated.

C. Conduit fittings shall be designed and approved for the specific use intended. Conduit fittings, including flexible, shall have insulated throats or bushings. Rigid conduits shall have insulated bushings, unless grounding bushings are required by N.E.C. Article 250. Grounding bushings shall have insulated throats.

D. Rigid and intermediate metal conduit shall be hot-dipped galvanized. Fittings shall be threaded type. Expansion fittings shall be OZ Type DX.

E. Electrical metallic tubing shall be galvanized. Fittings shall be all steel compression type. Expansion fittings shall be OZ Type TX.

F. Flexible metal conduit and fittings shall be zinc-coated steel.

G. Liquid-tight flexible conduit and fittings shall consist of single strip, continuous, flexible interlocked, double-wrapped steel, galvanized inside and outside, forming smooth internal wiring channel with liquid-tight covering of flexible polyvinyl chloride (PVC). It shall be furnished with a sealing O-ring where entering an enclosure subject to moisture. Where O-Rings are used, ground type bushings shall be used in the box or enclosure.

H. Nonmetallic conduit and fittings shall be suitable for temperature rating of conductor but not less than 90°C. Nonmetallic conduit and fittings shall be molded of high impact PVC compound having noncombustible, nonmagnetic, non-corrosive and chemical resistant properties and shall be of the same manufacturer. Where located outdoors and above ground, the conduit and fittings shall be UV resistant. Solvent cement shall be of the same manufacturer as the conduit and shall be of the brush-on type. Spray solvents are prohibited. PVC coated metallic fittings shall not be permitted for PVC conduit connections.

I. Crimp or set-screw type fittings are not acceptable.

J. Minimum conduit size shall be 3/4 inch, except 1/2 inch flexible metallic conduit may be used as fixture whips.

K. PVC coated rigid steel conduit shall be externally coated with a 40 mil PVC coating and internal phenolic coating over a galvanized surface.

2.2 PULL AND JUNCTION BOXES

A. Boxes shall be galvanized sheet metal conforming to ANSI/NEMA OS 1 with screw-on cover and welded seams, stainless steel nuts, bolts, screws and washers.

B. Boxes larger than 12 inches in any dimension shall be panelboard code gauze galvanized steel with hinged cover.

C. Boxes shall be sized in accordance with NEC.

D. Provide cast-in-place, pre-cast concrete or die-molded fiberglass handholes/pull boxes as per design for underground installations. Cast-in-place and pre-cast boxes shall be provided with reinforcing bars with material compressive strength no less than 11,000 psi, and shall be approved by Owner/Structural Engineer.

PART 3 EXECUTION

3.1 INSTALLATION - CONDUIT

A. Install products as indicated, in accordance with the applicable requirements of NEC, NEMA and the National Electrical Contractors Association’s “Standard of Installation”.

E&C Engineers & Consultants
E&C No. 3451.00
B. Cut conduit square using a saw or pipe cutter. De-burr cut ends. Joints in steel conduit must be painted with T&B Kopr shield and drawn up tight. Threads for rigid metal conduit and IMC shall be deep and clean. Running threads shall not be used. Wipe plastic conduit clean and dry before joining. Apply full, even coat of cement with brush to entire area that will be inserted into fitting. Let joint cure for 20 minutes minimum. Spray type of cement is not acceptable. Install raceway and conduit system from point of origin in outlets shown, complete with support assemblies including all necessary hangers, beam clamps, hanger rods, turnbuckles, bracing, rolls, clips angles, through bolts, brackets, saddles, nuts, bolts, washers, offsets, pull boxes, junction boxes and fittings to ensure a complete functional raceway system. Where vertical drops of conduit are made to equipment in open space, the vertical conduit shall be rigidly supported from racks supported on the floor.

C. Install rigid wall hot-dipped galvanized steel conduit or hot-dipped galvanized intermediate metal conduit for service entrance; feeders; wall or floor penetrations; mechanical rooms; electrical rooms and exposed locations where there is a high potential subject to physical damage; exposed outdoor locations; damp locations or any location as per design drawing. The following exceptions permitted:

1. EMT
 a. In sizes up to and including 1-1/2 inch, may be used inside dry locations where not subject to mechanical damage. EMT may be used in air-conditioned spaces, such as accessible ceilings, dry wall partitions and exposed where 6 feet above the floor. EMT may not be used outside, in concrete, underground, in under floor spaces, in masonry walls, in locations likely to be damp, in electrical rooms subject to mechanical damage due to future installation, or exposed within 6 feet of the floor. EMT shall not be used for medium voltage circuits.
 b. Where used for feeder circuits receptacle branch circuits and motor branch circuits EMT shall also contain a NEC grounding conductor.
 c. All conduits shall be concealed in walls or ceilings unless otherwise noted.

2. PVC (underground use only)
 a. Install PVC schedule 40 conduit where direct buried in earth.
 b. Type EB, Utility Duct, encased in concrete.

3. Liquid-tight
 a. Install liquid-tight flexible metal conduit for connections to rotating, vibrating, moving or movable equipment, including dry-type transformers. Install external ground wire on flexible conduit with grounding bushings. Maximum length shall be 6 feet minimum of 2 feet.

4. Flexible Metal Conduit
 a. Install standard flexible metal conduit (not liquid-tight), which shall be only used for lighting fixture whips or motor vibrations, with internal ground wire. Install flexible conduit connection such that vibrations are not transmitted to adjoining conduit or building structure. Maximum length shall be 6 feet minimum of 3 feet; minimum size shall be 3/4; and minimum size shall be ½ inch for lay-in light fixture whips.

D. Install conduits parallel and supported on Unistrut, or equal, trapezes and anchored with split ring hangers, conduit straps or other devices specifically designed for the purpose. No raceways or boxes shall be supported using wire. Arrange conduit to maintain...
headroom and present a neat appearance. Conduit routes shall follow the contour of the surface it is routed on. Route exposed conduit and tray above accessible ceilings parallel and perpendicular to walls and adjacent piping. Maintain 12-inch clearance between conduit and heat sources, such as flues, steam pipes, and heating appliances. Wire ties or “wrap lock” are not permitted to support or secure conduit system. Fasten conduit with the following material:

1. Wood screws on wood
2. Toggle bolts on hollow masonry
3. Bolts and expansion anchors in concrete or brick
4. Machine screws, threaded rods and clamps on steel
5. Conduit clips on steel joists.
6. 4 inch x 4 inch penta-treated pine installed in pitch pans on roof, spaced at intervals not to exceed 5 feet.

E. Install conduits outside of building lines at a minimum depth of 30 inches below finished grade. Maintain twelve inches earth or two inches concrete separation between electrical conduits and other services or utilities underground. Encase all plastic service entrance conduits with concrete unless otherwise specifically detailed or noted on the drawings.

F. Ducts in concrete encased ductbanks shall be independently supported by interlocking module spacers by Formex or equal. Spacers shall provide 3 inches separation between adjacent ducts. Spacers shall be installed at 6 feet maximum intervals.

G. Ducts in concrete encased ductbanks shall be terminated in manholes, pull boxes, and vaults with interlocking terminators. A watertight tapered plug shall be furnished and installed in unused duct openings. Where terminators are installed in new work, they shall be poured-in-place.

H. Install underground conduits with sealing glands equal to OZ Type FSK exterior to the conduit and OZ type CSB, or equal internally at the point where conduits enter the building to prevent water seepage into the building.

I. Fittings shall be approved for grounding purposes or shall be jumpered with a copper grounding conductor of appropriate ampacity. Leave termination of such jumpers exposed.

J. Install expansion fittings in metal and PVC conduit as follows:

1. Conduit Crossing Building Expansion Joints:
 a. EMT all sizes
 b. IMC all sizes
 c. RMC all sizes
 d. PVC all sizes

2. Conduits entering environmental rooms and other locations subject to thermal expansion and as required by NEC.

3. Unless expansion fitting has an integral bonding braid, as in Crouse-Hinds Type XC, a green insulated grounding conductor shall be pulled in the conduit. Both ends of this green grounding conductors shall be accessible for inspection.

K. Install conduit concealed in walls, partitions and above ceilings. Install conduit exposed in
ceiling area (at structure) of boiler rooms, mechanical rooms and in other similar rooms where ceilings are not called for. Install conduit concealed in slab when finished areas below do not have ceiling. A written approval shall be obtained from Owner/Structural Engineer prior to construction.

L. Avoid moisture traps where possible; where unavoidable, provide junction box with drain fitting at conduit low point.

M. Use suitable conduit caps to protect installed conduit against entrance of dirt and moisture if cable or wire are not installed immediate after conduit run. Tape covering conduit ends is not acceptable.

N. Provide 200 lb. nylon cord full length in empty conduit.

O. Where conduit penetrates fire-rated walls and floors, provide pipe sleeve two sizes larger than conduit; pack void around conduit with oakum and fill ends of sleeve with fire-resistive compound or provide mechanical fire-stop fittings with UL listed fire-rating or seal opening around conduit with UL listed foamed silicone elastomer compound equal to fire-rating of floor or wall.

P. Install no more than the equivalent of three 90-degree bends between boxes. Where four 90 degree bends are required, prior approval by the Engineer is required. Use conduit bodies to make sharp changes in direction, as around beams. Conduit bodies shall be readily accessible and sized for the cables installed. Running or rolling offsets are not approved. Use factory long radius elbows for bends in conduit larger than 2-inch size. All parallel bends shall be concentric.

Q. Conduit entering / exiting cable tray shall be attached to the tray rail by means of strut bolted to the rail and standard manufacturer's accessories or by use of a UL listed conduit to tray connector. Conduit shall only enter / exit tray horizontally supported within 3 feet of the tray and extend into the tray 2 inches. Conduit shall be terminated with a grounding bushing and bonded to the ground conductor routed in the tray. (The attachment to the tray shall not be considered a ground.)

R. Pull string shall be provided full length in conduit designated for future use.

3.2 INSTALLATION - BOXES

A. Provide electrical boxes as shown on Drawings, and as required for splices, taps, wire pulling, equipment connections, and code compliance.

B. Provide outlet box accessories as required for each installation, including mounting brackets, wallboard hangers, extension rings, fixture studs, cable clamps and metal straps for supporting outlet boxes, compatible with outlet boxes being used and meeting requirements of individual situations.

C. Electrical box locations shown on Contract Drawings are approximate unless dimensioned. Verify location of outlets prior to rough-in.

D. Locate and install boxes to allow access, minimum 12 inches above ceiling except where space dimensions do not allow.

E. Do not install boxes back-to-back in walls. Provide minimum 6-inch separation. Provide minimum 24-inch separation in acoustic-rated walls. If boxes are connected together, install flexible connection between the two and pack openings with fiberglass.

F. Secure boxes rigidly to the substrate upon which they are being mounted, or solidly imbed boxes in concrete or masonry. Do not support junction boxes from the raceway systems. Boxes shall not be permitted to move laterally. Boxes shall be secured between two studs. Boxes connected to one stud are not permitted.
G. Provide knockout plugs for unused openings.

H. Use multiple-gang boxes where more than one device is mounted together. Do not use sectional boxes. Provide barriers to separate wiring of different voltage systems.

I. Install boxes in walls without damaging wall insulation.

J. Outlet boxes in plaster partitions shall be "shallow-type" set flush in wall so there is at least 5/8 inch plaster covering back of box.

K. Outlet boxes for switch shall not be used as junction boxes.

L. Coordinate mounting heights and locations of outlets mounted above counters, benches and backsplashes.

M. In inaccessible ceiling areas, position outlets and junction boxes within 6 inches of recessed luminaire, to be accessible through luminaire ceiling opening.

N. Outlet boxes supporting fixtures shall be securely anchored in place in an approved manner. Support outlet boxes and fixtures in acoustic ceiling areas from building structures, not from acoustic ceilings. Lighting fixture outlets shall be coordinated with mechanical and architectural equipment and elements to eliminate conflicts and provide a workable neat installation.

O. Set floor boxes level and flush with finish flooring material.

P. Prove tamper resistance receptacles in child care areas, psychiatric, and medical facilities.

3.3 WALL AND FLOOR PENETRATIONS:

A. Core drilling shall be approved in writing by the Structural Engineer prior to execution. Avoid anchor bolt on structural column by installing "column hugging" type of unistrut support for electrical installation. PVC shall not be used for wall and floor penetration.

B. Wall penetrations for cable tray or under floor raceway shall be sealed in accordance with Specification Section 07840, Fire-stopping and Section 07900, Joint Sealers.

C. Provide a 3 1/2 inch curb around block outs through concrete floors. Fire-stop per Architectural specification.

D. Route conduit through roof openings for piping and ductwork where possible; otherwise, route through roof jack with pitch pocket. Coordinate roof penetrations with the roofing contractor.

END OF SECTION
SECTION 26 05 53
ELECTRICAL IDENTIFICATION

PART 1 GENERAL

1.1 WORK INCLUDED
 A. Nameplates and tape labels
 B. Wire and cable markers
 C. Conduit color coding and labeling

1.2 REFERENCES
 A. NFPA 70 – National Electrical Code (latest edition)

1.3 SUBMITTALS
 A. Provide submittals in accordance with and in addition to Section 26 00 00.UT, Basic Electrical Requirements, and Division 01 for submittal requirement.
 1. Furnish nameplate identification schedules listing equipment type and nameplate data with letter sizes and nameplate material.

PART 2 PRODUCTS

2.1 MATERIALS
 A. Equipment Nameplates:
 1. For normal power electrical equipment, provide engraved three-layer laminated plastic nameplates, engraved white letters on a black background.
 2. For emergency equipment provide engraved three-layer laminated plastic nameplates with engraved white letters on a red background.
 3. For UPS powered equipment provide engraved three-layer laminated plastic nameplates with engraved white letters on an orange background.
 4. For fire alarm system provide engraved three-layer laminated plastic nameplates with white letters on a yellow background.
 5. For security and CCTV system panels, provide engraved three-layer laminated plastic nameplates with white letters on a blue background.
 B. Conductor Color Tape and Heat Shrink:
 1. Colored vinyl electrical tape shall be applied perpendicular to the long dimension of the cable or conductor.
 2. In applications utilizing tray cable, heat shrinkable tubing shall be used to obtain the proper color coding for the length of the conductor in the cabinet or enclosure. Variations to the cable color coding due to standard types of wire or cables are not acceptable.
 C. Conduit Labels (5 kV and 15 kV Conduits Only): 2-inch black letters on yellow background reading "DANGER - 12,470 VOLTS" or "DANGER - 4,160 VOLTS". Labels shall have adhesive backing, and shall be installed at intervals not exceeding 50 feet and on all pull boxes located to be visible from floor.
 D. Warning labels: Provide warning labels with black lettering on red background with a minimum of 1/2" lettering.
E. Tape Labels: Embossed adhesive tape, with minimum 1/4-inch letters for labeling receptacles, switches, control device stations, junction and pull boxes and manual motor starter units, etc.
 1. White letters on black background for normal power.
 2. White letters on red background for emergency/standby power.
 3. White letters on orange background for UPS power.

F. J-Box and Cover plate Voltage Labels: Black stenciled letters 1/4” high. Adhesive back tapes may be used if a clear tape is applied over the label for protection.

PART 3 EXECUTION

3.1 INSTALLATION

A. Degrease and clean surfaces to receive nameplates or tape labels.

B. Install nameplates parallel to equipment lines.

C. Secure plastic nameplates to equipment fronts using screws or rivets. Use of adhesives shall be per Owner’s approval. Secure nameplate to outside face of flush mounted panelboard doors in finished locations.

3.2 WIRE IDENTIFICATION

A. Provide wire markers on each conductor in panelboard gutters, pull boxes, outlet and junction boxes, and at load connection. Identify with branch circuit or feeder number for power and lighting circuits. Label control wire with number as indicated on schematic and interconnection diagrams or equipment manufacturer’s shop drawings for control wiring.

B. Conductors for power circuits to be identified per the following schedule.

<table>
<thead>
<tr>
<th>Conductor</th>
<th>480/277V</th>
<th>208/120V</th>
<th>240/120V High Leg</th>
<th>Medium Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase A</td>
<td>Brown</td>
<td>Black</td>
<td>Black</td>
<td>One White Band</td>
</tr>
<tr>
<td>Phase B</td>
<td>Purple</td>
<td>Red</td>
<td>Orange</td>
<td>Two White Bands</td>
</tr>
<tr>
<td>Phase C</td>
<td>Yellow</td>
<td>Blue</td>
<td>Blue</td>
<td>Three White Bands</td>
</tr>
<tr>
<td>Neutral</td>
<td>Gray</td>
<td>White</td>
<td>White</td>
<td>N/A</td>
</tr>
<tr>
<td>Grounding</td>
<td>Green</td>
<td>Green w/Yellow</td>
<td>Green w/Yellow</td>
<td>Green</td>
</tr>
<tr>
<td>IG</td>
<td>N/A</td>
<td></td>
<td></td>
<td>N/A</td>
</tr>
</tbody>
</table>

3.3 NAMEPLATE ENGRAVING SCHEDULE

A. Provide nameplates of minimum letter height as scheduled below. Nameplates shall be same as equipment names indicated on the Drawings.

B. Individual Circuit Breakers in Distribution Panelboards, Disconnect Switches, Motor Starters, and Contactors: 1/4-inch; identify source to device and the load it serves, including location.

C. Dry Type Transformers Not in Substations: 3/8-inch; identify equipment designation. 1/4-inch; identify primary and secondary voltages, primary source, and secondary load and location.
D. Automatic Transfer Switches: 3/8-inch; white letters and red background; identify equipment designation 1/4-inch; identify voltage rating, normal source, standby source and load served including location.

E. Panelboards: 3/8-inch; identify equipment designation. 1/4 -inch; identify source, voltage and bus rating.

3.4 ENCLOSURE COLOR CODING

A. The following systems shall have each junction and pull box cover completely painted per the following:

NOTE TO SPEC WRITER: EDIT THE FOLLOWING DESCRIPTIVE SPECIFICATIONS FOR ANY CONFLICTS WITH THE EXISTING CONDITION.

<table>
<thead>
<tr>
<th>System</th>
<th>Color of Box Cover</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet Backbone</td>
<td>Blue</td>
</tr>
<tr>
<td>Telecommunications</td>
<td>Brown</td>
</tr>
<tr>
<td>FCMS</td>
<td>Green</td>
</tr>
<tr>
<td>Emergency Power</td>
<td>Red</td>
</tr>
<tr>
<td>Security**</td>
<td>White</td>
</tr>
<tr>
<td>Fire Alarm</td>
<td>Yellow</td>
</tr>
<tr>
<td>Clock</td>
<td>Fluorescent Violet</td>
</tr>
<tr>
<td>U.P.S.</td>
<td>Fluorescent Pink</td>
</tr>
</tbody>
</table>

**Security shall include, but not be limited to, the following systems:
- Card Access
- Duress Alarms
- Perimeter Door Alarms
- CCTV

END OF SECTION
SECTION 26 24 16

PANELBOARDS

PART 1 - GENERAL

1.1 WORK INCLUDED

A. Distribution panelboards.
B. Branch circuit panelboards.

1.2 REFERENCES

A. NEMA AB 1 - Molded Case Circuit Breakers and Molded Case Switches.
B. NAME KS 1 - Enclosed and Miscellaneous Distribution Equipment Switches (600 Volts Maximum).
C. NEMA PB 1 - Panelboards.
D. NEMA PB 1.1 - Instructions for Safe Installation, Operation and Maintenance of Panelboards Rated 600 Volts or Less.
F. NEMA AB 3 – Molded Case Breakers and Their Application
G. ANSI/UL 67 – Electric Panelboards
H. ANSI/UL 50 – Cabinets and Boxes
I. ANSI/UL 508 – Industrial Control Equipment

1.3 SUBMITTALS

A. Provide submittals in accordance with and in additional to Section 26 00 00.UT, Basic Electrical Requirements, and Division 01 for submittal requirement.
B. Submit dimensioned drawings showing size, circuit breaker arrangement and equipment ratings including, but not limited to, voltage, main bus ampacity, integrated short circuit ampere rating, and temperature rating of circuit breaker terminations.

1.4 PRODUCT DELIVERY, STORAGE AND HANDLING

A. Deliver distribution panelboards in factory-fabricated water-resistant wrapping.
B. Handle panelboards carefully to avoid damage to material component, enclosure and finish.
C. Store in a clean, dry space and protected from the weather.

PART 2 - PRODUCTS

2.1 ACCEPTABLE MANUFACTURERS

A. Square D Company
B. General Electric Company
C. Other manufacturers equal in design and function will be considered upon A/E approval following substitution procedure in 26 00 00, and Division 01 for substitution requirement.

2.2 SWITCHING AND OVERCURRENT PROTECTIVE DEVICES
A. Provide molded case circuit breakers with manufacturer’s standard construction, bolt on type, with integral inverse time delay thermal and instantaneous magnetic trip in each pole. Circuit breakers shall be constructed using glass reinforced polyester insulating material providing superior dielectric strength. Provide circuit breakers UL listed as Type HACR for air-conditioning equipment branch circuits.

B. Circuit breakers shall have an over center, trip-free, toggle operating mechanism that will provide a quick-make, quick-break contact action.

C. Provide handle padlock attachments on circuit breakers where indicated on drawings. Device shall be capable of accepting a single padlock. All circuit breakers shall be capable of being individually padlocked in the off position.

D. The circuit breakers shall be connected to the bus by means of solidly bolted connection. In multi-pole breakers, the phase connections on the bussing shall be made simultaneously without additional connectors or jumpers. Multi-pole breakers shall be two or three pole as specified. Handle ties are not permitted. The circuit breaker shall have common tripping for all poles.

E. All circuit breakers shall be provided with visible ON and OFF indications.

F. Provide GFI circuit breakers as indicated on drawing or per NEC requirement.

G. Breaker voltage and trip rating shall be per drawings. Breaker faceplate shall indicate UL certificate standards with applicable voltage systems and corresponding short current rating as per drawings.

H. Molded Case Circuit Breakers:
 1. Breakers 400 ampere frame and less shall be manufacturer’s standard industrial construction, bolt-on type, integral inverse time delay thermal and instantaneous magnetic trip. Breakers 225 ampere through 400 ampere shall have continuously adjustable magnetic pick-ups of approximately five to ten times trip rating.
 2. Breakers 600 ampere frame and above shall be equipped with solid-state trip complete with built-in current transformers, solid-state trip unit and flux transfer shunt trip.

I. Current Limiting Molded Case Circuit Breakers:
 1. Breakers 100 ampere frame shall be inverse time delay thermal and instantaneous magnetic trip.
 2. Breakers 250 ampere and 400 ampere frame shall be solid-state trip with built-in current transformers, solid-state trip unit and flux transfer shunt trip.
 3. Current limiting breakers shall protect downstream molded case breakers. Submit manufacturer’s test data proving the protection, from both peak currents and I2T energy of downstream devices.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Provide blank plates for unused open spaces in panelboards. Keep the front door closed after work to protect from damage, dirt, and debris at all times.

B. Install identification nameplates in accordance with Section 26 05 53, Electrical Identification.

3.2 FIELD QUALITY CONTROL
A. Visual and Mechanical Inspection: Inspect for physical damage, proper alignment, anchorage, and grounding. Check proper installation and tightness of connections for circuit breakers and lugs.

B. Provide testing and start-up as indicated in Section 26 08 00 – Commissioning of Electrical Systems.

3.3 PANELBOARD SCHEDULE

A. The Contractor shall provide engraved, laminated plastic nameplates for circuit identification as indicated on the Drawings for distribution panelboards.

B. The Contractor shall fill the index directory inside the front door of branch circuit panelboards identifying each circuit as shown on Panel Schedule drawings. Where changes are made, the schedule shall reflect the changes. At the end of the job, these schedules shall reflect as-built record conditions.

END OF SECTION
SECTION 26 28 13
FUSES, 600 VOLT

PART 1 - GENERAL

1.1 WORK INCLUDED
A. Dual-element, current limiting Class R fuses for loads up to 600 volts, 0-600 Amps.
B. Time delay, current limiting Class L fuses for loads up to 600 volts, 601-6000 Amps.

1.2 REFERENCES
A. UL 248-12 - Standard For Safety For Low-Voltage Fuses-Part 12: Class R Fuses
B. UL 248-10 - Standard For Safety For Low-Voltage Fuses-Part 10: Class L Fuses
C. Where application of local codes, trade association standard or publications appears to be in conflict with the requirements of this Section, the Architect/Engineer shall be asked for an interpretation.

1.3 SUBMITTALS
A. Provide submittals in accordance with and in additional to Section 26 00 00.UT, Basic Electrical Requirements, and Division 01 for submittal requirement.

1.4 PRODUCT DELIVERY, STORAGE AND HANDLING
A. Store fuses in a clean and dry space and protected from weather. When necessary to store outdoors, elevate materials well above grade and enclose with durable, waterproof wrapping.

PART 2 - PRODUCTS

2.1 MATERIAL AND EQUIPMENT
A. Furnish fuses manufactured by Buss, or equal, in accordance with the following:
 1. Motors and Transformers, 0 to 600 Amp:
 a. 250 volt - Buss LPN-RK, UL Class RK1.
 b. 600 volt - Buss LPS-RK, UL Class RK1.
 2. Lighting Loads, 0 to 600 Amp:
 a. 250 volt - Buss KTN-R, UL Class RK1.
 b. 600 volt - Buss KTS-R, UL Class RK1.
 3. All Applications, 601 to 6000 Amp:
 a. 600 volt - Buss KRP-C, UL Class L.
B. Size fuses serving motor loads as specifically recommended by motor or equipment manufacturer or in the range of 150% to 175% of motor nameplate rating per NEC in accordance to the type of motor.
C. Interrupting Rating: 300,000 RMS Amps.
D. Maintenance Stock, Fuses:
 1. Furnish the following:
a. Three spare fuses of each size and type for a spare set.

b. Furnish spare fuse cabinet sized to contain required spare fuse stock.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install fuses where indicated, in accordance with the manufacturer's written instructions, the applicable requirements of NEC, national and local codes, regulations, and requirements.

B. Provide quantity of spare fuses and fuse cabinet per the requirement of this Section at the location per drawing or the direction of Owner’s Representative, in addition to replace blown or defective fuses during installation, startup, system commissioning and acceptance.

END OF SECTION
SECTION 26 28 16
DISCONNECT SWITCHES

PART 1 GENERAL

1.1 WORK INCLUDED
A. Disconnect switches, fusible and non-fusible.
B. Enclosures.

1.2 REFERENCES
NOTE TO SPEC WRITER: INCLUDE ONLY REFERENCE STANDARDS THAT ARE TO BE INDICATED WITHIN THE TEXT OF THIS SECTION. EDIT THE FOLLOWING, ADDING AND DELETING AS REQUIRED FOR PROJECT AND PRODUCT SELECTION.
A. Federal Spec. W-S-865 - Switch, Box (Enclosed), Surface-Mounted.
B. NEMA KS 1 - Enclosed Switches.
C. NFPA 70 - National Electrical Code
D. NFPA 70E - Electrical Safety Requirement for Employee Workplaces
E. UL 98 - Enclosed Switches.

1.3 SUBMITTALS
A. Provide submittals in accordance with and in additional to Section 26 00 00, Basic Electrical Requirements, and Division 01 for submittal requirement.
B. Submit manufacturer's product data. Submit dimensioned drawings and equipment ratings for voltage, capacity, horsepower, and short circuit.

1.4 DELIVERY, STORAGE AND HANDLING
A. Deliver switches individually wrapped in factory-fabricated water-resistant type containers.
B. Handle switches carefully to avoid damage to material components, enclosure and finish. Damaged switches shall not be installed on project.
C. Store switches in a clean and dry space and protected from weather.

PART 2 PRODUCTS

2.1 FABRICATED SWITCHES
A. NEMA KS 1; Type HD quick-make, quick-break, load interrupter enclosed knife switch with externally operable handle interlocked to prevent opening front cover with switch in ON position. Handle lockable in OFF position. Handle lockable in ON position for service entrance disconnect. Provide defeater so that qualified personnel can open door while switch is in the closed position.
B. Use switches that have number of poles required as per drawings.
C. Switches shall be Underwriters' approved for duty shown and enclosure type per drawings. NEMA 3R switches shall be provided where exposed to weather. NEMA 3R switches shall have weatherproof threaded hubs for all conduit entries into switch.
D. Use fuse clips that are rejecting type to accept Class RK or L fuses only.
E. Identify switches, as to equipment served, with engraved laminated plastic plates. Refer to 26 05 53 Electrical Identification Section of this specification.

F. Voltage rating: 240VAC or 600VAC as per drawings.

PART 3 EXECUTION

3.1 INSPECTION

A. Installer shall examine the areas and conditions under which safety and disconnect switches are to be installed and notify the Contractor in writing of conditions detrimental to the proper and timely completion of the work. Do not proceed with the work until unsatisfactory conditions have been corrected.

3.2 INSTALLATION OF SAFETY AND DISCONNECT SWITCHES

A. Install safety or disconnect switches, where required by NEC, where indicated on drawings, and where required by equipment manufacturer, in a location convenient for maintenance on switch and adjacent equipment.

B. For equipment with motors larger than 1/8 hp, install disconnect switches within sight of the motor.

C. Provide fused disconnect switches, whether or not indicated on drawings, when required to maintain equipment manufacturer’s warranty. Coordinate with Division 23 for warranty requirements of equipment approved by submittal.

D. Install fuses in fusible disconnect switches. Provide permanent marking inside switch enclosure for fuse type.

E. Wall mount switches, where possible, or mount on unistrut supports.

END OF SECTION
DRAWING NOTES:

1. PIPE SIZING SHALL BE DETERMINED BY MANUFACTURER.
2. ROUTE CONDENSATE LINE TO THE NEAREST ROOF DRAIN.
3. INSTALL WALL MOUNTED VRF FCUS APPROXIMATELY 7' 0" AFF. INSTALL ABOVE METAL RACEWAY.
4. SET TEMP SETPOINT AT 3 DEGREES FAHRENHEIT ABOVE EXISTING DX FCU SET POINT. NEW UNIT IS TO BE BACK-UP FOR EXISTING UNIT, NOT TO OPERATE AT THE SAME TIME.
WIDTH AS REQUIRED, 4" MIN.
PRESSURE TREATED WOOD NAILER
INTERNAL BULKHEAD REINFORCEMENT
RIGID INSULATION ON ROOF DECK
WELD 18 GA. GALVANIZED STEEL SHELL, BASEPLATE AND COUNTERFLASHING
ROOFING TO MATCH EXISTING
ROOF DECK WITH INSULATION BELOW DECK

01 TYPICAL PIPE/EQUIPMENT ROOF CURB
NOT TO SCALE
DUCTLESS SPLIT INDOOR UNITS

<table>
<thead>
<tr>
<th>Mark</th>
<th>Manufacturer</th>
<th>Model No.</th>
<th>Supply CFM</th>
<th>Airflow Low-Med-High</th>
<th>EAT (DB/WB) °F</th>
<th>Total Cooling BTU/h</th>
<th>Sensible Cooling BTU/h</th>
<th>EAT °F</th>
<th>Heating Capacity BTU/h</th>
<th>Sound dBA</th>
<th>Voltage</th>
<th>MCA</th>
<th>MOP</th>
<th>Dimensions (WxHxD inches)</th>
<th>Weight (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDB FCU-R-3</td>
<td>Daikin</td>
<td>FTX36LVJU</td>
<td>808</td>
<td>510-657-908</td>
<td>80.0 / 67.0</td>
<td>36,000</td>
<td>22,390</td>
<td>70</td>
<td>36,000</td>
<td>65</td>
<td>Note 4</td>
<td>Note 4</td>
<td>Note 4</td>
<td>51.8x12.8x16.9</td>
<td>38</td>
</tr>
<tr>
<td>DDB FCU-R-4</td>
<td>Daikin</td>
<td>FTX36LVJU</td>
<td>808</td>
<td>510-657/908</td>
<td>80.0 / 67.0</td>
<td>36,000</td>
<td>22,390</td>
<td>70</td>
<td>36,000</td>
<td>65</td>
<td>Note 4</td>
<td>Note 4</td>
<td>Note 4</td>
<td>51.8x12.8x16.9</td>
<td>38</td>
</tr>
</tbody>
</table>

1. See Piping Schematics for refrigerant piping connection details.
2. All branch "Y" fittings or multi-unit header connection pieces are factory provided.
3. Units shall be provided with multiple fan speeds (Low-High or Low-Med-High) as scheduled.
4. Indoor Unit to be field wired to corresponding Outdoor unit for power supply.

DUCTLESS SPLIT OUTDOOR UNITS

<table>
<thead>
<tr>
<th>Mark</th>
<th>Manufact.</th>
<th>Model</th>
<th>Nominal Tonnage</th>
<th>Sub Model</th>
<th>Voltage</th>
<th>MCA</th>
<th>MOP</th>
<th>Weight (lbs)</th>
<th>Ambient Temp (Cooling)</th>
<th>Cooling MBH</th>
<th>Ambient Temp (Heating)</th>
<th>Heating MBH</th>
<th>Cooling EER</th>
<th>Cooling SEER</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCU-R-3</td>
<td>Daikin</td>
<td>RK536LVJU</td>
<td>3-tons</td>
<td>-</td>
<td>208V "ph"</td>
<td>19.5</td>
<td>20A</td>
<td>179</td>
<td>95</td>
<td>38.0</td>
<td>47</td>
<td>38.0</td>
<td>8.8</td>
<td>17.9</td>
</tr>
<tr>
<td>ACCU-R-4</td>
<td>Daikin</td>
<td>RK536LVJU</td>
<td>3-tons</td>
<td>-</td>
<td>208V "ph"</td>
<td>19.5</td>
<td>20A</td>
<td>179</td>
<td>95</td>
<td>38.0</td>
<td>47</td>
<td>38.0</td>
<td>8.8</td>
<td>17.9</td>
</tr>
</tbody>
</table>
 PROVIDE 20A 2P / BREAKER 2 *10, *10G C 60A 2P, 30A FUSED NEMA 3R DISCONNECT FOR CONDENSING UNIT.