PIPING DIAGRAMS ON DETAIL SHEET M500.

REMOVE EXISTING PIPING AS REQUIRED TO INSTALL NEW PIPE TO THE NEW UNITS PER THE AS-BUildts.

BASED OFF OF FIELD MEASUREMENTS WHERE THE DUCT COULD BE REACHED AND ORIGINAL FIELD VERIFY ACTUAL INTERNAL FREE AREA DUCT SIZES. DUCT SIZE SHOWN IS AN ESTIMATE. REMOVE DUCTWORK AS NOTED FOR REPLACEMENT. EXISITING FIRE DAMPERS TO REMAIN.

FURTHER INFO.

PROVIDE A TAP INTO THE EXHUAST DUCT AS NOTED FOR VENTILLATION DURING CUTTING OF THE REMOVE EXISTING VSD. REPLACE WITH NEW VSD. REFER TO ELECTRICAL DRAWINGS.

ALTERNATE D1 IF IT CAN BE COORDINATED TO REPLACE BOTH UNITS AT THE SAME TIME.

ON M300. ON THE LAB UNITS, THE WALL THE TWO UNITS SHARE MUST REMAIN IN PLACE DURING THE UNITS TO BE REPLACES SHALL BE BASED ON CONSTRUCTABILITY AND CONFIRMED WITH UTHSC-H.

BOTH AHUS TO SERVICE ONE EXISITNG LAB AHU OR TWO OFFICE AHUS. THE SEQUENCE OF THE ONCE THE DUCTWORK AT THE ROOF HAS BEEN CONNECTED TO THE RISERS AND THE FLEXIBLE DUCTWORK IN THE CHASE NECISSARY TO MAKE CONNECITONS.

FLEX MAY BE USED. REFER TO M500 FOR ISOMETRIC OF DUCT CONNECTIONS. REMOVE ANY TEMPORARY BYPASS AHU, RE:M300.

REMOVE AHU. ALL PIPING, DUCT, ELECTRICAL AND CONTROLS SERVING DRAWING NOTES:
ADDENDUM 1

AIR HANDLING UNIT L-5 & L-6 REPLACEMENT

Drawn By
Date: 2017.05.02
15:24:44-05'00'

PHILIP B. CAMDEN

For Construction

HOUSTON, TEXAS 77002

MECHANICAL PH RENOVATION DRAWING

MEDICAL SCHOOL BUILDING
SOUTH PENTHOUSE
AHU-L5 & L6 REPLACEMENT

THE SEAL APPEARING ON THIS DRAWING WAS AUTHORIZED BY:
E&C Engineers & Consultants Inc.

THEME
AC/0.5
AC/0.6
AC/0.7

NOTE:
1. CONNECT 4" TO FLOOR BELOW.
2. UNIT CONNECTIONS.
3. HEADS AS NEEDED. TRYING TO MAINTAIN AS MUCH HEAD HEIGHT AS POSSIBLE CLOSE TO THE COLUMNS.
4. POSSIBLE OUT FROM THE UNIT AND TRANSITION DOWN TO THE EXISTING FIRE DAMPER. RELOCATE SPRINKLER.
5. PROVIDE NEW DUCT AS NOTED FROM THE AHU TO THE CHASE CONNECTION. DUCT SHALL BE AS HIGH AS POSSIBLE.
6. CONTROL SEQUENCE FOR THE NEW AHU SHALL BE AS NOTED ON DRAWING M600 - CONTROL DIAGRAMS.
7. AT THE SAME TIME.

ONCE AHU-L-5 IS COMPLETE, AHU-L-6 MAY BEGIN. PROVIDE A DEDUCTIVE ALTERNATE FOR REPLACING BOTH UNITS.

COMMISSIONED WITH A MEMBER OF THE UTHSC-H STAFF IN ATTENDANCE.

NEW AHU SHALL BE STARTED UP WITH A REPRESENTATIVE FROM THE FACTORY AND PROVIDE PIPING TO NEW UNITS. ALL CONTROL VALVING SHALL BE PIPED IN THE UNITS AS NOTED.

NEW COILS WILL BE IN DIFFERENT LOCATIONS. ROUTE PIPE THROUGH STRUCTURAL OPENINGS AS NECESSARY TO THE TEMPORARY UNIT AND REMOVE THE TEMPORARY DUCT FROM THE PLENUM TO THE RISERS AND CAP TO MATCH EXISTING.

ONCE THE AHU HAS BEEN REPLACED, TIE BACK INTO THE CHILLED WATER, STEAM AND DUCTWORK.

P.103G
REPLACE CURB AROUND EXISTING EXHAUST DUCT PENETRATION.

REMOVE THE PLENUM ON TOP OF THE RISERS ON THE ROOF. PATCH THE ROOF TO MATCH EXISTING.

CAP TAPS THROUGH EXTERIOR WALL FOR USE ON FUTURE PHASES.

CONTRACTOR TO DISPOSE.

AND TURN OVER TO THE OWNER FOR USE ON FUTURE PHASES. IF THE OWNER FINDS THE DUCT UNUSABLE, DISCONNECT THE PLENUMS FROM THE RISERS. CAP THE RISERS AIRTIGHT. REMOVE FLEX DUCT FROM THE ROOF.
Provide fans with balance steam dampers

Laboratory replacement unit detail w/ condensate recovery

All lab units minimum dimensions are:
14' WIDE
20' LONG
14'0" MAX

Duct penetrations into chase approximate locations - field verify:
Bottom of hot deck L6 East - 12'
Bottom of cold deck L6 East - 13'
Bottom of hot deck L6 West - 9'
Bottom of cold deck L6 West - 10'
Bottom of hot deck L5 East - 9'
Bottom of cold deck L5 East - 10'
Bottom of hot deck L5 West - 6'
Bottom of cold deck L5 West - 7'

Unit will sit on a 6" housekeeping pad.

Lab and cool piping is routed inside the unit. These shall be one piping outlet to the air. On each side driver from the top of the unit, the manifold shall drop and coil isolation and balancing valves shall be accessed inside the unit.

Coils shall be internally demountable to be removed from inside the closest access door and out the closest access door.

Refer to the floor plans to note where doors are required to be on one or both sides of the unit.
AIR HANDLING UNIT SCHEDULE - REPLACEMENT

<table>
<thead>
<tr>
<th>UNIT INFORMATION</th>
<th>MAXIMUM</th>
<th>COIL SCHEDULE - CONDENSATE</th>
<th>TOTAL</th>
<th>COIL SCHEDULE - CONDENSATE</th>
<th>TOTAL</th>
<th>PUMP SCHEDULE - CONDENSATE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Air Handling Unit Schedule - Replacement

- **COIL SCHEDULE - CONDENSATE**
 - Type: Condensate
 - Total: 1

- **PUMP SCHEDULE - CONDENSATE**
 - Total: 1

Notes:
- **Checked By:**
- **E & C Project No.:** 3302.00
- **Describe HOUSING:**
- **Lighting:**
- **For:**

Information Shown is an Estimate.

Similars:
- **Similar To:** FLINT & WALLING ECP062S
- **Class Type:**

A/V HANDLING UNIT

The AHU shall be sited to ensure that all surfaces are well ventilated and that the temperature of the air supply is maintained at the design conditions. The AHU shall be provided with a filter bank to ensure that the air supplied is clean and free from contamination. The filter bank shall be designed to meet the performance requirements specified in the project drawings. The filter bank shall be equipped with a differential pressure switch to indicate high and low pressure conditions.

The AHU shall be equipped with a fan array to provide adequate air movement. The fan array shall be controlled by a variable frequency drive (VFD) to maintain the required air flow and pressure as specified in the project drawings. The VFD shall be capable of starting and stopping the fan array as required by the BAS system.

The AHU shall be equipped with a door switch to indicate when the door is open or closed. The door switch shall be connected to the BAS system to provide feedback to the control system.

The AHU shall be equipped with a supply air duct high pressure switch to indicate when the supply air pressure exceeds the design pressure. The switch shall be connected to the BAS system to provide feedback to the control system.

The AHU shall be equipped with a supply air duct low pressure switch to indicate when the supply air pressure falls below the design pressure. The switch shall be connected to the BAS system to provide feedback to the control system.

The AHU shall be equipped with a supply air duct temperature switch to indicate when the supply air temperature exceeds the design temperature. The switch shall be connected to the BAS system to provide feedback to the control system.

The AHU shall be equipped with a condenser temperature switch to indicate when the condenser water temperature exceeds the design temperature. The switch shall be connected to the BAS system to provide feedback to the control system.

The AHU shall be equipped with a supply air duct velocity switch to indicate when the supply air velocity exceeds the design velocity. The switch shall be connected to the BAS system to provide feedback to the control system.

The AHU shall be equipped with a supply air duct flow switch to indicate when the supply air flow falls below the design flow. The switch shall be connected to the BAS system to provide feedback to the control system.

The AHU shall be equipped with a supply air duct temperature switch to indicate when the supply air temperature falls below the design temperature. The switch shall be connected to the BAS system to provide feedback to the control system.

The AHU shall be equipped with a condenser water temperature switch to indicate when the condenser water temperature falls below the design temperature. The switch shall be connected to the BAS system to provide feedback to the control system.

The AHU shall be equipped with a supply air duct humidity switch to indicate when the supply air humidity exceeds the design humidity. The switch shall be connected to the BAS system to provide feedback to the control system.

The AHU shall be equipped with a supply air duct pressure switch to indicate when the supply air pressure falls below the design pressure. The switch shall be connected to the BAS system to provide feedback to the control system.

The AHU shall be equipped with a condenser water pressure switch to indicate when the condenser water pressure falls below the design pressure. The switch shall be connected to the BAS system to provide feedback to the control system.

The AHU shall be equipped with a supply air duct temperature switch to indicate when the supply air temperature exceeds the design temperature. The switch shall be connected to the BAS system to provide feedback to the control system.

The AHU shall be equipped with a supply air duct temperature switch to indicate when the supply air temperature falls below the design temperature. The switch shall be connected to the BAS system to provide feedback to the control system.

The AHU shall be equipped with a condenser water temperature switch to indicate when the condenser water temperature exceeds the design temperature. The switch shall be connected to the BAS system to provide feedback to the control system.

The AHU shall be equipped with a supply air duct temperature switch to indicate when the supply air temperature falls below the design temperature. The switch shall be connected to the BAS system to provide feedback to the control system.

The AHU shall be equipped with a condenser water temperature switch to indicate when the condenser water temperature exceeds the design temperature. The switch shall be connected to the BAS system to provide feedback to the control system.

The AHU shall be equipped with a supply air duct temperature switch to indicate when the supply air temperature exceeds the design temperature. The switch shall be connected to the BAS system to provide feedback to the control system.

The AHU shall be equipped with a condenser water temperature switch to indicate when the condenser water temperature falls below the design temperature. The switch shall be connected to the BAS system to provide feedback to the control system.

The AHU shall be equipped with a supply air duct temperature switch to indicate when the supply air temperature exceeds the design temperature. The switch shall be connected to the BAS system to provide feedback to the control system.

The AHU shall be equipped with a condenser water temperature switch to indicate when the condenser water temperature falls below the design temperature. The switch shall be connected to the BAS system to provide feedback to the control system.

The AHU shall be equipped with a supply air duct temperature switch to indicate when the supply air temperature exceeds the design temperature. The switch shall be connected to the BAS system to provide feedback to the control system.

The AHU shall be equipped with a condenser water temperature switch to indicate when the condenser water temperature falls below the design temperature. The switch shall be connected to the BAS system to provide feedback to the control system.

The AHU shall be equipped with a supply air duct temperature switch to indicate when the supply air temperature exceeds the design temperature. The switch shall be connected to the BAS system to provide feedback to the control system.

The AHU shall be equipped with a condenser water temperature switch to indicate when the condenser water temperature falls below the design temperature. The switch shall be connected to the BAS system to provide feedback to the control system.

The AHU shall be equipped with a supply air duct temperature switch to indicate when the supply air temperature exceeds the design temperature. The switch shall be connected to the BAS system to provide feedback to the control system.

The AHU shall be equipped with a condenser water temperature switch to indicate when the condenser water temperature falls below the design temperature. The switch shall be connected to the BAS system to provide feedback to the control system.

The AHU shall be equipped with a supply air duct temperature switch to indicate when the supply air temperature exceeds the design temperature. The switch shall be connected to the BAS system to provide feedback to the control system.

The AHU shall be equipped with a condenser water temperature switch to indicate when the condenser water temperature falls below the design temperature. The switch shall be connected to the BAS system to provide feedback to the control system.

The AHU shall be equipped with a supply air duct temperature switch to indicate when the supply air temperature exceeds the design temperature. The switch shall be connected to the BAS system to provide feedback to the control system.

The AHU shall be equipped with a condenser water temperature switch to indicate when the condenser water temperature falls below the design temperature. The switch shall be connected to the BAS system to provide feedback to the control system.

The AHU shall be equipped with a supply air duct temperature switch to indicate when the supply air temperature exceeds the design temperature. The switch shall be connected to the BAS system to provide feedback to the control system.

The AHU shall be equipped with a condenser water temperature switch to indicate when the condenser water temperature falls below the design temperature. The switch shall be connected to the BAS system to provide feedback to the control system.
NOTES:
1. COORDINATE OPENING SIZE WITH MEP DRAWINGS AND MEP DUCTS.
2. COORDINATE LOCATION OF CURB FOR AHU WITH MEP DRAWINGS AND APPROVED EQUIPMENT SHP DRAWINGS. CURB MAY BE SET BACK FROM OPENING EDGE.
3. KEEP A CLEAR DISTANCE OF 12 INCHES (MINIMUM) BETWEEN THE NEW OPENING AND THE EXISTING OPENING.
4. DO NOT DAMAGE OR DISTURB THE EXISTING ROOF OR THE EXISTING DUCT.

PENTHOUSE ROOF PLAN

DECK

EXISTING OPENING

EXISTING BEAM

CURB FOR NEW PLENUM OPENING

CURB FOR NEW PLENUM OPENING

SLAB INFILL PLAN

NOTE:
1. AFTER REMOVAL OF TEMPORARY UNITS, INFILL THE OPENING AS SHOWN
2. PROVIDE NEW STEEL ANGLES ALONG AS SHOWN IN DETAIL 65201
3. SEE DETAIL 65201 FOR ADDITIONAL INFORMATION