THE RESEARCH PROTOCOL:
WHAT, WHY, WHO, HOW, AND SO WHAT

Ruby Benjamin-Garner, PhD
Program Manager
Center for Clinical and Translational Sciences
THE RESEARCH PROTOCOL

WHAT?
WHY?
WHO?
HOW?
SO WHAT?
To review the basic elements of the research protocol and identify where the essential questions what, why, who, how, and so what may be answered.
Good research ideas are sometimes hindered by poor communication of the written plan to carry out the research.
Protocol issues frequently cited by reviewers

- Inadequate justification of sample size
- Questionable feasibility
- Analysis plan missing or inappropriate for the design
- Insufficient background and rationale for the study
- Inadequate description of procedures
- Hypothesis statement or aims are vague/not clear
A WELL-WRITTEN PROTOCOL WILL:

• Avoid delays in approval
• Facilitate study implementation and conduct
• Reduce errors and protocol deviations
A PROPOSAL OF RESEARCH
 VS.
 A PROTOCOL FOR RESEARCH CONDUCT

PROPOSAL
• Presentation of an idea for research
• emphasis on rationale and innovation
• generally intended to solicit funding

PROTOCOL
• Detailed plan of how a study is to be carried out
• emphasis on study procedures
THE RESEARCH PROTOCOL

- IRB Review
- Study implementation planning
- Guide for study conduct
Your research protocol is your blueprint for conducting the study and should allow assessment of:

1. Scientific merit
2. Safety of human subjects
3. Procedures for conducting the study
ESSENTIAL QUESTIONS TO BE ANSWERED BY THE PROTOCOL

WHAT
WHY
WHO
HOW
SO WHAT
What is the research about?

What question(s) is the research intended to answer?
Reason or rationale for study
Who will be the subjects

- Target population
- Study population
- Inclusion/exclusion criteria
• Study design
• Study procedures
• Sample size and/or power
• Data analysis
• Significance of findings
• Impact on practice
• Contribution to knowledge
“If a research project is not worth doing at all, it is not worth doing properly”
<table>
<thead>
<tr>
<th>Protocol Section</th>
<th>Essential Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific Aims</td>
<td>WHAT: outcomes and predictors</td>
</tr>
<tr>
<td></td>
<td>WHO: study population</td>
</tr>
<tr>
<td>Background</td>
<td>WHY: rationale</td>
</tr>
<tr>
<td></td>
<td>SO WHAT: significance</td>
</tr>
<tr>
<td>Research Design and Methods</td>
<td>WHO: study population</td>
</tr>
<tr>
<td></td>
<td>HOW: study procedures</td>
</tr>
<tr>
<td>Data Analysis</td>
<td>WHO: study population and how many</td>
</tr>
<tr>
<td></td>
<td>HOW: analysis plan</td>
</tr>
<tr>
<td>Human Subjects Protection</td>
<td>WHO: subject recruitment and enrollment</td>
</tr>
<tr>
<td></td>
<td>HOW: informed consent, confidentiality</td>
</tr>
</tbody>
</table>
A descriptive study title can convey
• Research question or objective
• Research design
• Study population
• Outcome and predictor measures

The WHAT, WHO, and HOW of the research
EXAMPLE (Industry)

A phase II, randomized, double-blind, placebo-controlled study to evaluate the safety and efficacy of drug X in patients with disease Y
EXAMPLE (non-industry)

A randomized, controlled trial to determine the impact of regular exercise on the blood glucose levels of elderly patients with type 2 diabetes
The specific aims section clearly conveys WHAT the study is about, WHO the study population is, and outcome and predictor measures.
SPECIFIC AIMS

• Clear statement of the research question

• Statement of hypothesis

• Study objectives listed as primary, secondary, exploratory
The research question drives the design, procedures, and analysis of the study. The research question should be FINER

- Feasible
- Interesting
- Novel
- Ethical
- Relevant
Specific aims derive from the research questions

Aims should be SMART:
Specific: precise, avoid being vague
Measureable: quantifiable
Achievable: feasibility
Relevant: beneficial
Time-bound: achievable within study period
Study objectives/aims should be prioritized as:

- Primary
- Secondary
- Exploratory
BACKGROUND AND SIGNIFICANCE

• WHAT the study is about
• Review of the literature
• Identify short comings of previous studies
• Need for further research
• Make the case for WHY the proposed study should be done
• Implications of the findings (SO WHAT)
Description of strategies to be used to answer the research question and accomplish each specific aim.
A statement on the type of study indicates the methods to be used.

- Randomized, controlled trial
- Cross sectional survey
- Retrospective, case-control study
- Prospective, cohort study
STUDY POPULATION

WHO

• Description of study population
• Inclusion/exclusion criteria
• Sources of recruitment
• Feasibility of recruiting sample size
• Follow up and retention strategies
STUDY PROCEDURES

HOW

Detailed description on how the study is to be conducted.
STUDY PROCEDURES

- Recruitment, sources and methods
- Screening and enrollment
- Randomization plan
- Visit schedule with description of study activities/procedures
- Lab tests and methods
- Specimen preparation, handling, storage, shipping
- Clinical evaluations, i.e. physical exams, scans
- Data collection
Describe plans for data safety and monitoring

- Potential adverse events, detection and plan for reporting
- Safety monitoring plan, i.e. DSMB, and interim reviews
Sample size determination based on:
- Expected effect
- Variability of the outcome measure
- Acceptable type I error rate
- Acceptable type II error rate
Also consider:

- Non-response and losses to follow up
- Multiple comparisons and interim analyses
- Study design and method of analysis/test statistic
Other justifications for sample size

• Time
• Availability of subjects
• Costs/budget

NOTE: Sample size should never be arbitrary
DATA ANALYSIS PLAN

How the data will be analyzed, including hypotheses to be tested, the test statistic to be applied, and level of statistical significance for:

• Primary outcome
• Secondary outcomes
• Exploratory outcomes
A well designed, well written protocol should address the questions WHAT, WHY, WHO, HOW, and SO WHAT sufficiently to allow for determination of both scientific merit and safety of human subject.
SUMMARY

Poorly designed research is unethical